
Crescent Software's

QuickPak
Professional

Cli QuickPak
CRESCENT
SOFTWARE, INC. PROFESSIONAL

Advanced Programming Library for
BASIC Compilers

Version 4.0

Entire contents Copyright© 1988, 1989, 1991, 1992 and 1993 by Ethan Winer, Donald R. Malin and
Crescent Software, Inc. All rights reserved. Third Printing. 3/93

No portion of this software or manual may be duplicated in any manner without the
written permission of Crescent Software, Inc.

CRESCENT SOFTWARE, INC.
11 Bailey Avenue
Ridgefield, CT 06877
PHONE: (203) 438-5300 111 FAX: (203) 431-4626

Table of Contents

QuickPak Professional

Chapter 1 - Introduction
Welcome to QuickPak Professional
Overview
QuickPak Professional Is Easy to Use
QuickPak Professional Versions . .
Quick Start
Introduction to QuickPak Professional

Using Libraries
Building Libraries Using LIB.EXE .
Building Quick Libraries and Using MakeQLB
Modules and Subprograms
Adding QuickPak Professional Routines to Your

Programs
Organizing Your Directories
Using Polled Routines
Using Action Parameters
Passing the CNF Variable
To Call or Not to Call
Using the QuickPak Professional File Access

Routines
Opening Files
Sequential Files
Random Files

Adding to QuickBASIC
Using the Assembler Routines
Using the BASIC Routines
Functions
Passing Values
Passing Arrays
Passing Fixed-Length String and Type Arrays
Linking With QuickPak Professional
Building Quick Libraries
Building Libraries for QuickBASIC 2 and 3 .
Adding BASIC Programs to a Quick Library
Compiling and Linking from DOS
Response Files
Extracting Object Modules from PRO.LIB
Using Integers
Eliminating "ON ERROR"
Multi-Tasking Menus
Bit Arrays

Crescent Software, Inc.

Table of Contents

1-2

1-3

1-4

1-5

1-5

1-6

1-8

1-10

1-13

1-15

1-17

1-19

1-21

1-22

1-25

1-26

1-26

1-28

1-29

1-31

1-32

1-33

1-34

1-36

1-38

1-40

1-41

1-43

1-45

1-46

1-47

1-48

1-49

1-50

1-51

1-53

1-55

i

Table of Contents QuickPak Professional

The QuickPak Professional Editor and Spreadsheet
QEdit - The QuickPak Professional Editor
Spread - The QuickPak Professional Spreadsheet
Spreadsheet Program Description

QuickPak Professional Functions
Very Long Integers
Sorts vs. Indexed Sorts
DEFCNF and SETCNF
Credits
Differences from Previous Versions of QuickPak
Differences from Earlier Versions of QuickPak

Professional
Tutorials

Comparing CALL, GOSUB, and Multiline Functions
Subprograms
Functions
GOSUB
Functions in QuickBASIC 4. 0
Summing Up

Dynamic vs. Static Arrays . .
Saving Screen Images to Disk
Saving Arrays to Disk
Calling with Segments
Storing Data Items Outside BASIC's String Space
Common Problems (and Solutions)

QuickBASIC Error Messages

Chapter 2 - Array Routines
Addlnt
DeleteStr
DeleteT
DimBits
Fill2, 4, 8
Find and Find2
FindB and FindB2
FindExact
FindT and FindT2
FindTB and FindTB2
FindLast

GetBit
IMaxD, I, L, S, C
IMinD, I, L, S, C
Initlnt

1-56
1-62
1-66
1-68
1-71
1-73
1-77
1-78
1-80

1-84

1-85
1-85
1-86
1-90
1-91
1-92
1-93
1-95
1-98

1-102
1-105

1-109

2-1
2-2
2-3
2-4
2-5
2-6
2-8
2-9

2-10
2-12
2-13
2-14
2-15
2-16
2-17

ii Crescent Software, Inc.

QuickPak Professional Table of Contents

InsertStr 2-18
InsertT 2-19
ISortD, I, L, S, C 2-20
ISortStr and ISortStr2 2-21
ISortT and ISortT2 2-22
KeySort 2-24
MaxD, I, L, S, C 2-27
MinD, I, L, S, C 2-28
Search 2-29
SearchT and SearchT2 2-31
SetBit 2-33
SortD, I, L, S, C 2-34
SortStr and SortStr2 2-35
SortT and SortT2 2-36

Chapter 3 - DOS Services
CDir 3-1
ClipFile 3-2
DCount 3-4
Disklnfo 3-5
DiskRoom 3-6
DiskSize 3-7
DOSError 3-8
DOSVer 3-9
ErrorMsg 3-10
ExeName 3-11
Exist 3-13

FastLoad and FastSave 3-14
FClose 3-16
FCopy 3-17
FCount 3-19
FCreate 3-20
FEof 3-21
FFlush 3-22
FGet 3-24
FGetA 3-25
FGetAH 3-27
FGetR 3-28
FGetRT and FGetRTA 3-29
FGetT 3-30
FileComp 3-31
FileCopy 3-32
FileCrypt 3-34

Crescent Software, Inc. iii

Table of Contents QuickPak Professional

Filelnfo 3-36
FileSize 3-38
FileSort 3-39
FLinput 3-40

FLoc 3-41
FLof 3-42
FOpen and FOpenS 3-43
FOpenAll 3-44
FormatDiskette 3-45
FPut 3-48
FPutA 3-49
FPutAH 3-50
FPutR 3-51
FPutRT and FPutRTA 3-52
FPutT 3-53
FSeek 3-54
FStamp 3-55
FullName 3-57
GetAttr 3-58
GetDir 3-60
GetDisketteType 3-61
GetDrive 3-62
GetVol 3-63
GoodDrive 3-64
Handle2Name 3-65
KillDir 3-66
KillFile 3-68
LastDrive 3-69
LineCount 3-70
LoadExec 3-72
LockFile 3-74
MakeDir 3-75
NameDir 3-76
NameFile 3-77
NetDrive 3-78
PutVol 3-79
QBLoad 3-80
QBSave 3-81
QuickDOS 3-82
ReadDir 3-84
ReadDirs 3-86
ReadDirT 3-87

iv Crescent Software, Inc.

Table of Contents QuickPak Professional

vi

UnSigned
MATHEMATICAL FUNCTIONS

QPACOS
QPASIN
QPATAN2
QPLOGlO
QPROUND

FINANCIAL FUNCTIONS
Sinking fund annuities:

4-19

4-20
4-21
4-21
4-22
4-22

QPFV - Future value of ordinary annuity 4-24
QPFVN - Term of a sinking fund 4-24
QPFVP - Payment amount of a sinking fund 4-24

Annuity due:
QPFVD - Future value of annuity due . . 4-25
QPFVND - Term of an annuity due/FV 4-25
QPFVPD - Payment amount of an annuity due/FV 4-25

Ordinary annuity:
QPPMT - Loan payment 4-26
QPPV - Present value of an annuity 4-26
QPPVN - Term of an annuity 4-26

Annuity due relationships:
QPPMTD - Lease payment 4-27
QPPVD - Present value of annuity due 4-27
QPPVND - Term of an annuity due . 4-27

Other compound interest relationships:
QPCINT - Compounded interest . . . 4-28
QPCTERM - Compounded term of investment 4-28
QPIRR - Internal rate of return 4-29
QPNPV - Net present value of future cash flows 4-29
QPRATE - Rate of investment 4-29

Depreciation:
QPDDB - Double declining balance depreciation 4-30
QPSLN - Straight-line depreciation 4-31
QPSYD - Sum-of-years'-digits depreciation 4-31

Statistical functions:
QPAVG - Average of the values in an array 4-32
QPCOUNT - Number of entries in an array 4-32
QPMAX - Highest value in a list 4-33
QPMIN - Lowest value in a list 4-33
QPSTD - Population standard deviation of a list 4-33
QPSUM - Sum of all values in an array 4-34
QPV AR - Population variance of a list 4-34

Crescent Software, Inc.

QuickPak Professional

ReadFile .
ReadFilel
ReadFileT
ReadFileX
ReadSect .
ReadTest
Removable
ScanFile .

SearchPath
SetAttr
SetCmd
SetDrive
SetError
SetLevel
Share There
SplitName
Unique
UnLockFile
Valid . .
WhichError
QuickPak Professional Error Codes
WriteSect
W riteSect2
WriteTest

Chapter 4 - Functions
Bin2Num

C2F
Delimit
Eval
Expand Tab
F2C
LastFirst .
LastLast .
Num2Bin and Num2Bin2
Pad
Parse .
ParseStr
QPHex

Rand .
Shrink:Tab
Signed
UnParseStr

Crescent Software, Inc.

Table of Contents

3-89

3-91

3-93

3-95

3-96

3-97

3-98

3-99

3-101

3-102

3-103

3-104

3-105

3-106

3-107

3-108

3-109

3-110

3-111

3-112

3-113

3-114

3-116

3-117

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

4-9

4-10

4-11

4-13

4-14

4-15

4-16

4-17

4-18

V

QuickPak Professional

Chapter S - Menu/Input Routines
AMenu
AMenuT
ASCIIPick and MASCIIPick
CapNum
ColorPick and MColorPick
Dateln
Dialog
DirFile
Editor .
Lts2Menu
LtsMenu .
MAMenu
MAMenuT
Maskln
MEditor .
MenuVert
MGetKey
MMenuVert
Numln
PickList .
PullDown
PullDnMS
QEdit .
Scrollln
Spread
Textln
VertMenu
VertMenuT
YesNo
YesNoB .

Chapter 6 - Keyboard/Mouse Routines
AltKey
ButtonPress
CapsLock
CapsOff and CapsOn
ClearBuf .
CtrlKey
GetCursor
GetCursorT
Graf Cursor
HideCursor

Crescent Software, Inc.

Table of Contents

5-1
5-4
5-5

5-7
5-8

5-10
5-12
5-18
5-20
5-22
5-24
5-26
5-28
5-30
5-33
5-35
5-37

5-39

5-41

5-43
5-45
5-47
5-49

5-51
5-54

5-55

5-57
5-58
5-59
5-60

6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-9

6-10
6-11

vii

Table of Contents

InitMouse
InStat . .
Keyboard
Keydown
Motion
Mouse
MouseRange, 1, G, G 1
MouseState
MouseTrap
NumLock
NumOff and NumOn
PeekBuf
RptKey
ScrlLock
SetCursor
ShiftKey .
Show Cursor
StuffBuf .
TextCursor
WaitKey
WaitScan
WaitUp

Chapter 7 - Miscellaneous Routines

AddUSI .
ASCIIChart
BCopy
BCopyT
BLPrint
Cale
Calendar
Chime
Clock and Clock 24
Compare
CompareT
Date2Day
Date2Num
DayName
Demol23
DirTree .
EDate2Num
EMS Manager
EMS Error Codes

viii

QuickPak Professional

6-12
6-13
6-14
6-16
6-18
6-19
6-21
6-23
6-24
6-26
6-27
6-28
6-29
6-30
6-31
6-32
6-33
6-34
6-36
6-38
6-39
6-40

7-1
7-2
7-3
7-5
7-7
7-9

7-10
7-11
7-12
7-14
7-16
7-18
7-19
7-21
7-22
7-23
7-24
7-25
7-27

Crescent Software, Inc.

QuickPak Professional

WeekDay
WordWrap
XMS Manager

Accessing XMS
Using the XMS Routines
XMS Error Codes

XMS Functions
XMSError
XMSLoaded

XMS Subroutines
XMSAllocMem
XMSRelMem
Array2XMS
XMS2Array
XMSGetlEI
XMSSetlEI
XMSinfo
XMSSetError
KeepXMSHandle
UMBAllocMem
UMBRelMem

Chapter 8 - String Manipulation Routines
ASCII
Blanks
Compact
Encrypt and Encrypt2
Far2Str
FUsing
InCount and InCount2
InCountTbl
InstrTbl and InstrTbl2
InstrTblB and InstrTblB2
LongestStr
LowASCII
Lower
LowerTbl
MidChar
MidCharS
Notlnstr
Null
ParseString

Crescent Software, Inc.

Table of Contents

7-108

7-109

7-110

7-110

7-111

7-113

7-114

7-114

7-115

7-115

7-115

7-116

7-117

7-118

7-119

7-119

7-120

7-120

7-120

8-1

8-3

8-4

8-5

8-7

8-8

8-10

8-11

8-12

8-13

8-14

8-15

8-16

8-17

8-18

8-20

8-21

8-22

8-23

xi

Table of Contents

Proper Name
Qlnstr and Qlnstr2
QinstrB and QinstrB2
QinstrH
QPLeft, QPMid, and QPRight
QPLen
QPSadd
QPStrl and QPStrL
QPTrim, QPLTrim, and QPRTrim
QPValI and QPValL
RemCtrl
ReplaceChar and ReplaceChar2 .
ReplaceCharT and ReplaceCharT2
ReplaceString
ReplaceTbl .
Sequence
SpellNumber
Translate
Upper . . .
UpperTbl

Chapter 9 - Video Routines
APrint
APrint0
APrintT .
APrintT0
ArraySize
BlinkOff and BlinkOn
Box
Box0 . .
BPrint
ClearEOL
ClearScr .
ClearScr0
Colors
CsrSize
EGABLoad
EGABSave

EGAMem
FillScrn .
Fi11Scrn0
GetColor
GetVMode

xii

QuickPak Professional

8-25
8-26
8-27
8-28
8-29
8-30
8-31
8-32
8-33
8-34
8-35
8-36
8-37
8-39
8-40
8-41
8-42
8-43
8-44
8-45

9-1
9-4
9-5
9-7
9-9

9-11
9-12
9-13
9-14
9-15
9-16
9-17
9-18
9-20
9-21
9-22
9-23
9-24
9-25
9-26
9-27

Crescent Software, Inc.

QuickPak Professional Table of Co,uents

EMS Functions

EmsError 7-28
EmsGetPFSeg 7-28
EmsLoaded 7-28
EmsNumPages 7-28
EmsPageCount 7-29
EmsPagesFree 7-29
EmsVersion 7-29

EMS Subroutines

Array2Ems 7-30
Ems2Array 7-31
EmsAllocMem 7-31
EmsGetlEl 7-32
EmsRelMem 7-33
EmsSetError 7-33
EmsSetPage 7-33
EmsSetlEl 7-34

Empty 7-35
ENum2Date 7-36
Evaluate 7-37
Extended 7-40
Factorial 7-41
FileView 7-42
FudgeFactor 7-45
GetCMOS 7-46
GetCPU 7-47
GetDS 7-48
GetEquip 7-49
LockUp 7-50
MakeQLB 7-51
Marquee 7-54
MathChip 7-55
Maxlnt and MaxLong 7-56
Minlnt and MinLong 7-57
MonthName 7-58
MsgBox 7-59
Num2Date 7-61
Num2Day 7-62
Num2Time 7-63
Pause 7-64
Pause2 7-65
Pause3 7-66

Crescent Software, Inc. ix

Table of Contents

X

PDQTimer
Peekl
Peek2
Pokel
Poke2
Power and Power2
PRNReady . .
PSwap
QPCli and QPSti
QPPlay
QPSolver
QPSound
QPSSeg and QPSegAdr
QPUSI
ReBoot
ShiftlL and ShiftlR
ShiftLL and ShiftLR
Soundex . . .
String Manager

FindLastSM
GetlStr
GetlString
GetNext .
MidStrSave/MidStrRest
NumStrings .
StringRest
StringRestore
StringSave
String Size
StrLength
SublString

SysTime
Time2Num
Times2
Traplnt
View File
VLAdd
VLDiv
VLMul
VLPack
VLSub
VLUnpack

QuickPak Professional

7-67

7-68

7-69

7-70

7-71

7-72

7-73

7-74

7-75

7-76

7-77

7-78

7-79

7-80

7-81

7-82

7-83

7-84

7-87

7-88

7-89

7-89

7-90

7-91

7-91

7-92

7-92

7-93

7-93

7-94

7-95

7-96

7-97

7-98

7-100

7-102

7-103

7-104

7-105

7-106

7-107

Crescent Software, Inc.

QuickPak Professional Table of Contents

HCopy 9-28

HercThere 9-29

MakeMono 9-31

MakeMon2 9-33

Monitor 9-34

MPaintBox 9-36

MPRestore 9-37

MQPrint 9-39

MScrnSave and MScrnRest 9-40

OneColor 9-41

PaintBox 9-42

PaintBox0 9-44

PrtSc 9-45

PrtSc0 9-47

PUsing 9-48

QPrint 9-50

QPrint0 9-52

QPrintAny 9-53

QPrintRC 9-55

QPWindow 9-56

ReadScrn 9-58

ReadScrn0 9-60

ScrnDump 9-61

ScrnRest 9-63

ScrnRest0 9-65

ScrnSave 9-66

ScrnSave0 9-67

ScrollD, ScrollL, ScrollR, ScrollU 9-68

SetMonSeg 9-69

SplitColor 9-70

Window Mgr 9-71

Wipes 9-73

Chapter 10 - Quick Reference

Array Manipulation 10-1

Array Sorts 10-5

Date/Time 10-7

Directory 10-9

Disk and Disk Drive 10-10

Error Handling 10-12

File Management 10-13

Financial Functions 10-17

Keyboard 10-19

Crescent Software, Inc. xiii

Table of Contents

Menus

Miscellaneous

Mouse

Numeric Functions and Subs

Printer

Save/Load/Display Screens

Sound

Statistical Functions

String Manipulation

Text/Data Entry
Utility Programs

Video

Index

xiv

QuickPak Professional

10-21

10-23

10-26

10-28

10-32

10-33

10-34

10-35

10-36

10-42

10-44

10-45

Crescent Software, Inc.

Chapter 1
Introduction

I

QuickPak Professional Chapter 1

Thank you for purchasing QuickPak Professional! We have put
every effort into making this the finest and most complete collection
of BASIC utilities available. We sincerely hope that you find it both
useful and informative. If you have a comment, a complaint, or
perhaps a suggestion for another product you'd like to see, please
let us know. We want to be your favorite software company.

Before we begin discussing the contents of the QuickPak
Professional utilities, please take a few moments to fill out the
enclosed registration card. Doing this entitles you to free technical
support by phone, as well as ensuring that you are notified of
possible upgrades and new products. Many upgrades are offered at
little or no cost, but we can't tell you about them unless we know
who you are!

Also, please mark the product serial number on your disk labels.
License agreements and registration forms have an irritating way of
becoming lost, and doing this will insure that the number is always
handy if you need to contact us.

You may also want to note the version number in a convenient
location, since it is stored directly on the distribution disk in the
volume label. If you ever have occasion to call us for assistance, we
will probably need to know the version you are using. To determine
the version number for any Crescent product, simply display a
directory of the original disk. The first thing that appears will be
something like:

Volume in drive A is QPPro V4.00

We are constantly improving all of our products, so you may want
to call us periodically and ask for the current version number.
Major upgrades are always announced, however minor fixes or
additions are generally not. If you are having any problems at
all-even if you are sure it is not with one of our products-please
call us. We support all versions of Microsoft compiled BASIC, and
can often provide better assistance than Microsoft.

Crescent Software, Inc. 1-1

---1

Chapter 1 QuickPak Professional

WELCOME TO QUICKPAK PROFESSIONAL

1-2

QuickPak Professional is a comprehensive collection of subroutines
and functions designed to complement Microsoft QuickBASIC and
BASIC 7 PDS. There are three key components to QuickPak
Professional:

1. Assembly language routines that provide a dramatic
improvement over what would be possible using BASIC
alone. Some of the routines improve on BASIC's speed
and code size, while others allow access to DOS and BIOS
services not possible any other way. Assembler routines
can also eliminate the need to use ON ERROR.

2. BASIC subprograms and functions to perform a variety of
chores that would be tedious or difficult to write yourself.
In some cases, routines that are provided in assembly
language are also present in a BASIC equivalent so they
may be easily customized.

3. The Assembly Tutor which will get you started writing
your own assembly language routines, and this manual.

All of the programs include heavily commented source code, not
only to show how they are used, but to explain how they work as
well.

Crescent Software, Inc.

1---

QuickPak Professional Chapter 1

OVERVIEW

QuickPak Professional contains many different and varied utilities
which are intended to be added to programs you write in BASIC.
Literally hundreds of routines are provided to search and sort
arrays, do windowing and quick printing, perform date and time
arithmetic, and to access the keyboard in ways not possible using
BASIC alone.

In addition to the DOS, video, and other services common to most
"toolbox" products, we have also provided a number of major
subprograms. For example, QEdit is intended to be used whenever
you want to add a text editor to your programs. However, it could
be turned into a full-blown word processor with very little
additional programming. Likewise, the SPREAD.BAS subprogram
provides a nearly complete spreadsheet, lacking only user-defined
formulas and macro interpretation.

Other major subprograms include a sophisticated pull-down menu
complete with mouse support, a vertical menu with scrolling, a
dialog box data entry system, and several pop-up utilities. In
addition, QuickPak Professional comes with routines to search,
browse, and encrypt files, and sort an array or file on any number
of keys.

Finally, an assembler program is provided that will transfer the
contents of a graphics screen in any screen mode to nearly any
printer. Supported printers include those that follow either the
Epson/IBM dot-matrix standard, or accept the codes used by the
Hewlett-Packard LaserJet. Besides honoring all of the
BASIC-supported graphics modes, this routine will also provide
intelligent pattern-substitution based on the screen colors.

There are many, many other programs included, and only by
examining this manual in detail will you become acquainted with all
of them. Most of the routines are amply illustrated by an
accompanying demonstration program. All of the demo programs
for the BASIC programs begin with the letters DEMO, to make
them easy to identify. BASIC programs with the same names as
their assembler counterparts are used to illustrate those routines in
context.

Crescent Software, Inc. 1-3

Chapter 1 QuickPak Professional

QUICKPAK PROFESSIONAL IS EASY TO USE

1-4

In designing Quick.Pak Professional, major effort has gone into
making the routines as easy to use as possible, without sacrificing
any of their power, flexibility, or speed.

For example, the number of passed parameters has been kept to the
absolute minimum which helps to reduce the size of your programs.
Further, all of the DOS services that require a drive letter will
accept either upper or lower case, or a null string to indicate the
default drive.

In addition, the routines that read a list of file and directory names
from a disk are designed to read all of them in one operation.
Where other methods require you to loop repeatedly getting them
one by one until an error occurs, the QuickPak Professional
routines process the entire directory from a single call.

All of the routines that expect a file or directory name are given
exactly as they would be in BASIC. Where other commercial
toolbox routines require you to append a CHR$(0) to the end of a
DOS file name, we do this for you automatically.

Finally, QuickPak Professional employs functions where
appropriate. In many cases this will greatly simplify their use. For
example, to obtain the current default drive is as easy as:

CurDrive$ = CHR$(GetDrive%)

Contrast that with the usual method:

CALL GetDrive(Drive%)
CurDrive$ = CHR$(Drive%)

Clearly, the QuickPak Professional method is easier, and
contributes less code as well.

Crescent Software, Inc.

QuickPak Professional Chapter 1

QUICKPAK PROFESSIONAL VERSIONS

QuickPak Professional is available in two versions with one
intended for use with QuickBASIC 4.0 or later, and another for
QuickBASIC 2. The correct version of QuickPak Professional is
required for use with each of these compilers.

This version of QuickPak Professional is for use with QuickBASIC
4.0, 4.5, BASIC 6.0, and BASIC 7. x PDS.

QUICK START

This manual covers the many important topics you will need to
know to use QuickPak Professional effectively. Besides providing a
list of each routine and its calling syntax, many other details are
described in depth. In addition, a number of tutorials on various
aspects of BASIC programming are also contained in the Tutorial.

If you are familiar with BASIC programming and want to begin right
away, simply start QuickBASIC 4 by loading the PRO.QLB Quick
Library like this:

QB /L PRO

If you are using BASIC PDS, then you would specify the
PRO7 .LIB file as follows:

QBX /L PRO?

Once BASIC has been started, you may run any of the
demonstration programs to quickly see what the various routines do,
and how they are called. Many of the demonstration programs start
with the letters DEMO, to make them easy to identify from the
QuickBASIC editor Files menu.

The following sections are intended as an introduction to using
libraries and multiple program modules for those not familiar with
these concepts.

Crescent Software, Inc. 1-5

I

Chapter 1 QuickPak Professional

futroduction to QuickPak Professional
We have designed QuickPak Professional to be as easy to use as
possible. Quick Libraries are provided and are readily available to
be loaded with QuickBASIC. Many useful and informative
demonstration programs are also included, and our technical support
staff is eager to assist you when help is needed.

This tutorial is intended for programmers who are not familiar with
using external subroutines and libraries. It also includes useful
information about advanced concepts employed by some of the
QuickPak Professional routines.

USING LIBRARIES

1-6

When you compile a BASIC program, the Microsoft BC compiler
converts your code into equivalent machine language instructions
and places the result in an object file with an . OBJ extension.
Programs written in other Microsoft languages such as assembler,
C, or Pascal are also compiled and converted to the same object file
format. Subroutines written in these languages can be added to
your compiled BASIC object files when the final program is created
with LINK.EXE.

Subroutines contained in object files can also be placed into a
library, simplifying the linking process. A library is simply a
collection of object files, and its advantage is that you do not need
to explicitly specify which object files are to be added to the
program.

There are two types of libraries that you need to know about when
using QuickPak Professional: Quick Libraries with a .QLB
extension, and regular libraries with an .LIB extension.

The Quick Library is a special type of library made from any
combination of object files and regular .LIB libraries. Because the
QuickBASIC editor is, in fact, an interpreter and not a true
compiler, Quick Libraries are needed in order to access external
compiler assembled subroutines. It is important to understand that a
Quick Library is used only while you are in the QuickBASIC editor.

You load a Quick Library when starting QuickBASIC, by using the
/1 option switch as follows:

Crescent Software, Inc.

QuickPak Professional Chapter 1

qb /l pro

The /1 switch tells QuickBASIC to load a Quick Library - in this
case PRO.QLB. Note that the .QLB file extension is implied and
not required. If the Quick Library is in a directory or drive other
than the current default, a complete DOS path to the library must be
given after the /1 switch as follows:

qb /l d:\quickpak\pro

QuickBASIC allows only one Quick Library to be loaded at a time.
Therefore, all of the external routines that your program will be
using in the QB environment must be contained in that Quick
Library. This is not a problem if you are using only QuickPak
Professional routines, since both the .LIB and .QLB libraries
contain the same routines. However, if you need to access routines
from more than one library while in the QB editor, it will be
necessary for you to make a single quick library from the various
libraries required by your program. This will be discussed in the
following section that describes how to build Quick Libraries.

The second type of library that you will need to know about is the
.LIB library. This library is used in the linking process and is
accessed by LINK.EXE whenever you use external library routines
in your programs. In fact, LINK also includes routines contained in
the .LIB libraries that come with BASIC.

When you are in the QB environment and select "Make .EXE
file ... " from the pulldown menu, QB checks to see if there is a
Quick Library loaded. If there is, it searches for a corresponding
.LIB library and adds the required routines from that library to your
program. If you are linking from the DOS command line, you must
specify this .LIB library at the end of your link line, thus:

link /options myprog, , nul, pro ;

In this case LINK assumes an .LIB extension, so it is not entirely
necessary to include it. Understand that LINK is very smart, and
includes only those routines that are actually called by your
program. You may also specify that multiple object files and
libraries be included:

link /options objectl object2 , , nul , llbl llb2 ;

Crescent Software, Inc. 1-7

I

Chapter 1 QuickPak Professional

BUILDING LIBRARIES USING LIB.EXE

1-8

Libraries are built from object files. Once a file has been compiled
to an . OBJ file format, it may be added to a library by using the
LIB.EXE program included with QuickBASIC. LIB.EXE is a
utility program that allows you to manipulate .LIB libraries. For
example, to create a new library, you would type the following
command at the DOS prompt:

lib libname +my.obj +his.obj +her.obj ;

Here, libname is the name of the library that you are creating, and
the plus sign tells LIB.EXE that the various files with an .OBJ
extension are to be added to this library. You may also include one
or more complete libraries:

LIB libname + object! +lib!. lib +lib2. lib

LIB.EXE assumes an .OBJ extension when adding modules to a
library. Therefore, you must include the .LIB extension when
adding an existing library file.

LIB.EXE may also be used to delete, replace, or extract a copy of
selected .OBJ files from an existing library. The syntax for these
operations is as follows:

lib pro +my.obj +your.obj
lib pro -my.obj -her.obj
lib pro *my.obj *her.obj

The first example adds the routines in MY.OBJ and YOUR.OBJ to
the PRO.LIB library. The second deletes the routines contained in
MY.OBJ and HER.OBJ from the library. The last example extracts
a copy of the routines, without affecting the library.

In case you are wondering why you would ever want to modify a
library, consider this: When you are in the QuickBASIC
environment, the Quick Library that is loaded occupies memory.
As your program grows in size, it too will require more memory.
At some point, the combined size of both your code and the loaded
Quick Library may exceed the amount of available memory. This
will cause an "Out of string space" or "Out of memory" error
message. Since it is very unlikely that you are using every routine
in QuickPak Professional, you can preserve a substantial amount of
memory by using a subset of PRO.QLB containing only the routines
that your program actually needs.

Crescent Software, Inc.

QuickPak Professional Chapter 1

There are two ways you can build a subset library. One is to
extract the object files that your program needs by using the asterisk
(*) command of LIB.EXE, and then build a new Quick Library
from those files. Another way is to delete the routines that you do
not need from a copy of the .LIB library by using the"-" command.
You would then create a new Quick Library by utilizing this
modified .LIB library. Please understand that there is no need to
reduce the size of an .LIB library. Rather, it is only a Quick
Library that is loaded into memory. However, creating a new .LIB
library can in some cases make it easier to create a new Quick
Library that contains the same routines. This will be discussed in
further detail in the section entitled Building Quick Libraries and
Using MakeQLB.

When many commands are needed to manipulate an .LIB library,
you may optionally place those commands into a file, instead of
having to enter them all at once from the command line. Such a file
is called a response file, because it holds a series of responses to the
LIB.EXE prompt messages.

A LIB.EXE response file is simply an ASCII text file that lists each
command on a separate line. A typical LIB.EXE response file is
shown below.

+ my.obj &
+ your.obj &
+ his.obj &
+ \qb\their.obj

The ampersand (&) at the end of each line tells LIB.EXE that more
commands will follow. To indicate the end of the response file, a
semicolon rather than an ampersand is used following the last . OBJ
file. By convention you should save this file with an .RSP
extension, and then run LIB.EXE as follows:

lib libname @my.rsp

The at sign(@) tells LIB.EXE that MY.RSP is a response file, and
not an object file with that name.

Another useful feature of LIB.EXE is its ability to create a file that
lists all of the routines in a specified .LIB library. This is called a
list file, and can be created by invoking LIB.EXE manually as
follows:

you enter:

Crescent Software, Inc. 1-9

I

Chapter 1 QuickPak Professional

lib pro

LIB.EXE responds:

Operations: <Enter>
List File: pro. 1st <Enter>

When LIB.EXE asks what operations you want to perform, just
press Enter. When it asks for the name of a list file, enter
PRO.LST and press Enter.

Once LIB .EXE has created this file, it may be viewed in any ASCII
text editor. A list file is organized in two different ways. The first
portion alphabetically lists all of the routines found in your library
along with the object module that contains it. The second portion of
the file alphabetically lists each object module in the library,
showing the routines it contains below and to the right. Understand
that the object module is the name you will provide when adding or
extracting object files; the routine names are what you use when
actually calling the routine.

In many cases these names are the same. For example, the
QuickPak Professional QPrint routine is contained in an object file
named QPRINT.OBJ. However, some routine names are longer
than eight characters, and the object file name must be slightly
altered.

The information contained in a list file will help you to determine
what module name to extract, based on the call name listed in the
QuickPak manual. It can also be used to verify whether or not a
particular routine is in your library.

Now that you know how to create and modify .LIB libraries, let's
take a look at how to create a Quick Library.

BUILDING QUICK LIBRARIES AND USING MAKEQLB

As mentioned before, Quick Libraries are used only while you are
in the QuickBASIC environment. There are several ways to create
a Quick Library, but the easiest is to use the MakeQLB utility
program that we have included with QuickPak Professional.

1-10 Crescent Software, Inc.

QuickPak Professional Chapter 1

To use MakeQLB you must first compile and link MAKEQLB.BAS
as shown in the program's header comments. Once you have
created the MAKEQLB.EXE executable program, you are ready to
put it to use.

If your program already exists and you want to create a smaller
subset Quick Library, run MakeQLB as follows from the DOS
command line:

makeqlb

MakeQLB will then prompt you for the information it needs, using
an interface similar to LIB and LINK:

Main Module Name [*.BAS]:
Output Library Name [*.QLB]:
List File Name [*.LST]:
INPUT libraries [PRO.LIB]:
BQLB## Library Name [BQLB45.LIB]:

At the first prompt, simply type in the name of your main module
with or without an extension (.BAS is implied), and press Enter.

The second prompt asks for the name of the Quick Library that is
being created. The .QLB extension is implied, and does not need to
be entered. If you simply press Enter, MakeQLB will use the same
name as your main module; however, it employs a .QLB extension.

The third prompt is the name of the list file that MakeQLB will
create, and this file will hold the names of all of the routines that
are added to the Quick Library. If you press Enter, MakeQLB will
use the same name as the main module.

The fourth prompt is for the names of the .LIB libraries that contain
the routines used by your program. The default name is PRO.LIB,
and you may type in any additional library names that your program
requires. Multiple libraries may be specified as well, with each
separated by a space. Of course, each file name may optionally be
preceded by a full DOS path name if necessary.

The final prompt is for the appropriate BASIC support library, and
this name will vary depending on which version of BASIC you are
using. BQLB45.LIB is the default, which is meant for
QuickBASIC version 4.5. For QuickBASIC version 4.0, the
support library is BQLB40.LIB, and for version 4.00b it is
BQLB41.LIB. If you are using BASIC 7. x you will instead enter
QBXQLB.LIB.

Crescent Software, Inc. 1-11

I

I Chapter 1 QuickPak Professional

After MakeQLB has created the Quick Library, it writes a list file.
This is simply an ASCII text file containing the names of the
routines that were just added to the Quick library. This list file can
be very useful for a number of reasons. First, it lets you verify the
routines that are actually in your Quick library. But more
important, you may modify this file to either add or delete routines
from your Quick library. You may then run MAKEQLB.EXE
again, but this time by specifying the list file instead of the BASIC
source program. You may also manually create a list file from
scratch, and avoid the time required for MakeQLB to process your
source program.

The format for a MakeQLB list file is very simple. You merely use
any ASCII text editor, and type the name of the routine as it
appears in your manual on a single line. The next routine goes on
the next line, and so forth:

APrintO
BLPrint
OneColor
AMenuT

The most common problem people encounter when running
MakeQLB is that they fail to specify all of required .LIB libraries.
This results in the error message "Unresolved external in
CHRIS MAY. OBJ". If you instead receive an error message that
indicates an Unresolved External and the subroutine is written in
BASIC, then it is most likely that these modules were not loaded
when you saved your main program. Finally, if you get the error
message "Subscript out of range", then you failed to use the /ah
switch when compiling MAKEQLB.BAS.

It is important to understand that MAKEQLB.EXE creates only a
Quick Library. Since you may use as many .LIB libraries as
necessary when linking, there is no need to combine them into a
single library. Further, .LIB libraries are not loaded into memory,
so there is no need to develop a:· subset library containing only the
routines that you are using.

If you prefer to manually create a Quick Library, then you will
have to use the version of LINK.EXE that came with your
compiler. Manually creating a Quick Library from the DOS
command line is described in detail elsewhere in this manual.

1-12 Crescent Software, Inc.

QuickPak Professional Chapter 1

MODULES AND SUBPROGRAMS

Beginning programmers using QuickBASIC are often confused
about the differences between modules, subroutines, and what
Microsoft calls module-level code. A module is simply a file that
holds BASIC source code. Every program has a main module, and
some programs also have additional modules that contain ancillary
subprograms and functions.

External modules can be thought of as a "folder" that holds the
subroutines. In such a module, the only executable code is in the
actual subroutines, and the main portion may contain only compiler
directives such as DECLARE, CONST, and TYPE definition
statements. When you press F2 while in the QuickBASIC editor, a
dialog box appears listing all of the BASIC subs and functions in
your program. The text that appears shows each module in capital
letters, and the subprograms and functions it contains are indented
and in mixed case.

One of the biggest advantages that modules offer is easy expansion
to your programs. You may add routines that you (or we) have
already written, tested, and debugged, and simply make calls to
them from anywhere in your program. This also lets you reuse the
same routines in more than one program; therefore, it reduces the
amount of programming effort needed.

Except for a few isolated cases, module-level code must be located
in the main module. The only exceptions to this are DEF FN-style
functions, and the target of an ON ERROR label. The first
executable statement in your main module is the first statement that
will be executed by your program. The example that follows shows
this in context.

Crescent Software, Inc. 1-13

Chapter 1

MYPROG.BAS Main Module

DEFINT A-Z
DECLARE SUB Dialog (Argl, ...)
DECLARE SUB PullDNMS (A$...)
DECLARE SUB GetFile (Argl, ...)

DECLARE SUB Textin (Argl ...)
DECLARE SUB MQPrint (Argl ...)

COLOR 15, 1
CLS
CALL PullDown(Argl, Arg2 ...)

SELECT CASE MENU
CASE 0

END SELECT

CALL GetFile(Argl, ...)
FOR i = 1 TO SomeNumber

Do some stuff
NEXT

CALL Dialog(Argl, Arg2 ...)

END

:-

QuickPak Professional

PULLDNMS.BAS Module
~

DEFINT A-Z
DECLARE SUB PaintBox (Argl, ...)
DECLARE SUB QPrint (Ar11, ...)
DECLARE SUB MScrnSave Argl, ...)

DECLARE ...
... . . ---- . -
DEFINT A-Z
SUB BarPrint (Paraml, ...)

...

. .
END SUB

- DEFINT A-Z
SUB PullDNMS (Paraml, ...)

...

..
END SUB

DEFINT A-Z
SUB PullMenKey (Paraml, ...)

...

. .
END SUB ~----------..-j,_

DEFINT A-Z ~ SUB GetFile (Paraml, ...)
CALL Textin(Argl, Arg2 ...) Subroutines for PULLDNMS.BAS module
CALL Exist(Argl, ...) Declarations for PULLDNMS.BAS

END SUB .._ __________ __. Declarations and module level code
Subprogram in the main module

DIALOG.BAS Module --- Declarations for DIALOG.BAS module
~ Subroutines for DIALOG.BAS module

DEFINT A-Z
DECLARE SUB PaintBox \Argl ...)
DECLARE SUB MQPrintO ArJl ...)
DECLARE SUB BoxO (Argl ..
DECLARE ...
. . .
. .

-
DEFINT A-Z
SUB Dialog (Paraml, ...)

... . .
END SUB

-
DEFINT A-Z
FUNCTION LongestStr (Paraml ..)
...
. .
END FUNCTION

1-14 Crescent Software, Inc.

QuickPak Professional Chapter 1

This example graphically illustrates how a three-module program is
organized by BASIC. The dummy code inside the three main boxes
is what might be found in the individual module text files. These
boxes are then subdivided to show what portion of code would
appear inside the Quick Basic editing window when you select the
module or subprogram by that name.

Note that there is no module level code in the two modules
PULLDNMS.BAS and DIALOG.BAS. The only executable code
is in the individual subprograms within those modules, and the only
executable module level code is in the main module. The main
module can then make calls to any subprogram or function in any
module. In addition, once a procedure has been called, it too can
access other procedures in any module.

Finally, notice that the DECLARE statements that are needed for a
given module depend only on the procedures that will be accessed
from that module. It is not necessary to declare routines in other
modules if they are not going to be called directly.

ADDING QUICKPAK PROFESSIONAL ROUTINES
TO YOUR PROGRAMS

Nearly all of the routines in QuickPak Professional expect integer
arguments. The easiest way to insure that only integers are passed
is to use DEFINT A-Z as the first line in any module or subroutine
that calls a Quickpak Professional routine. This statement tells the
compiler that variables starting with the letters A through Z (that is,
all variables) are to be treated as integers unless otherwise specified.

If you do not add the DEFINT A-Z statement, BASIC assumes that
all variables are single precision. If you need to have variables of a
different type, you may append the appropriate type suffix to those
variables to override the integer default:

X! = 14.2
Y# = 173.9
Z& = 1098657

'single precision
'double precision
'long integer

Crescent Software, Inc. 1-15

I

Chapter 1 QuickPak Professional

There are several advantages to using integer variables wherever
possible. First, operations on integers are many times faster than
the equivalent operations on single or double precision numbers.
Second, integers require less memory since they only take 2 bytes
of memory. Single and double precision variables require 4 and 8
bytes respectively. In addition, if you call an assembler routine that
expects integer arguments with any other type of variable, you are
certain to get the wrong results. In some cases you could also lock
up the PC requiring a reboot.

Before you add a QuickPak Professional routine to your program
you will need to determine whether the routine is a BASIC or
assembler subroutine or function. This is clearly documented at the
top of the page that describes each routine. If you are adding an
assembler routine, you can access the routine with a CALL, as
shown in the routine's description found in the manual.

Initially, you must load PRO.QLB as described earlier, if the
routine is written in assembly language. If the routine is a BASIC
subroutine or function, you will instead add it to your program by
using the Load option of QuickBASIC's File menu. For example,
if you wanted to use the QuickPak Professional Parse function
contained in the module FNOTHER.BAS, you would load
FNOTHER.BAS as a module.

It is also important that you declare the various QuickPak
Professional routines correctly. We have provided a module called
DECLARE.BAS, if you are not sure of the correct syntax. This
file contains the appropriate declarations for every routine contained
in QuickPak Professional. We suggest that you load
DECLARE.BAS as a document, and then copy the individual
DECLARE statements to your program as needed. Although you
could load DECLARE.BAS as an Include file, this will reduce
substantially the amount of memory that is available for your
program.

1-16 Crescent Software, Inc.

QuickPak Professional Chapter 1

ORGANIZING YOUR DIRECTORIES

As our installation instructions indicate, we recommend that you
create a directory called \PRO, and place all of the QuickPak
Professional BASIC modules and library files in that directory.
Once this is accomplished, you will probably want to run the
various demonstration programs from within the QuickBASIC
environment. For the sake of this discussion, we will assume that
your version of QuickBASIC is installed in a directory called \QB45
located on drive C.

The easiest way to get started is to change to the \PRO directory,
and then type the path to QuickBASIC and start QB as follows:

C:\> cd \pro
C:\PRO> \qb45\qb /1 pro

This starts QB.EXE from the \QB45 directory, although that
directory is not the current one. If your system PATH is set to
include C:\QB45, then you do not have to type in the full path name.

Since the \PRO directory is still the current directory, you may now
select Open or Load from QuickBASIC's File menu. The dialog
box will then display all of the files with a .BAS extension in the
current directory. To run the demonstration programs you must use
Open from the file selection menu, not Load. Open tells QB to also
look for a corresponding .MAK file, which indicates additional
modules that are to be loaded automatically.

Many of the QuickPak Professional demonstration programs have a
.MAK file; in particular, those that show how to use a BASIC
subprogram or function. In that case, the demonstration program is
the one you will load and run initially, and the demonstrated
QuickPak Professional routine is loaded along with it, based on its
name being listed in the .MAK file. Load is primarily used when
adding a module to an existing program.

Although this is the method we recommend - at least when getting
started - there are other ways to organize your directories. Some
programmers place all of their .BAS files and libraries in one
enormous directory along with QuickBASIC. However, this defeats
the purpose of using directories, since the whole point is to let you
keep related files and modules in their own directory. At some
point, with such a large directory, it can become very confusing as
to which files came with QuickBASIC, which are part of QuickPak
Professional, and which are those you have written.

Crescent Software, Inc. 1-17

I

Chapter 1 QuickPak Professional

To eliminate this confusion, we recommend that you keep a
separate directory for QuickBASIC, a separate directory for
QuickPak Professional, and a separate directory for each project
that you work on. With this arrangement you can clearly see which
files go with which project. When you need a BASIC source file
from QuickPak Professional, you can load it from the \PRO
directory, and that directory will be remembered in the main
program's .MAK file. Then, each time you want to work on a
program you will first change to the appropriate directory, and start
QuickBASIC like this:

\qb45\qb program /1 \pro\pro

You can also create a short batch file to perform this automatically
for you. As long as the batch file is in a directory listed in the
system PATH setting, it can be run from any other directory on
your hard disk. The sample QB.BAT batch file that follows shows
one way to do this:

\QB45\QB %1, %2 /1\Pro\Pro

t t specify PRO.QLB
directory containing PRO.QLB
/l means load a Quick Library

...__ ______ allows an optional parameter

~-------receives the program name
.__ ________ run QuickBASIC

~----------directory for QuickBAS!C

You can create this file in any ASCII text editor, or by using the
DOS COPY CON: command. Then to start QuickBASIC you
simply enter:

qb program

Where program is the name of the main program to load, and the
% 1 and %2 parameters are replaced with the name of the program
you enter and one optional parameter such as /ah.

Since you will not be in the \PRO directory while QuickBASIC is
running, you will need a way to tell QuickBASIC where the
PRO.LIB file is when you create an .EXE program. This is the
purpose of the LIB= environment variable. If you add the
statement LIB=C:\PRO to your AUTOEXEC.BAT file, LINK will
read that variable and know to look there for PRO.LIB.

1-18 Crescent Software, Inc.

QuickPak Professional Chapter I

With Microsoft PDS 7.1 object files may also be placed in the
directory set with LIB=, and LINK.EXE will be able to find these
files as well. This can be useful if you have an object module that
is not in a library, but is used often in your programs. This way
you do not have to type in the complete path to it each time you run
LINK.EXE.

USING POLLED ROUTINES

When you call most subroutines, execution is passed to that routine
until it has completed its task. Usually this is what you want.
However, there are times when it is desirable to have the routine
return periodically, so your program can monitor what is happening
while it is working. For example, when you use BASIC's INPUT
statement, you have no control over what happens or for how long,
until the operator presses Enter. Also, BASIC does not provide any
way for you to recognize the Fl key, when pressed, to display a
help screen. To solve this problem, several of the QuickPak
Professional routines are designed to be called repeatedly in a loop,
allowing you to monitor what is going on as they operate.

One example of a polled routine that you are probably familiar with
is BASIC's INKEY$ function. Using INKEY$ in a loop as shown
below lets you check for a key press and print it on the screen,
while simultaneously printing the current time.

DD
Ky$= INKEY$
LOCATE 1, 1: PRINT Ky$
LOCATE 2, 1: PRINT TIME$

LOOP UNTIL Ky$= CHR$(27) 'until they press Escape

BASIC's INPUT$ function can also be used to return a single key
press. But if it were used in place of the INKEY$ function above,
the program will halt until a key is pressed. Therefore, INKEY$ is
a very simple example of a pollable subroutine. As you can see,
polling opens up many possibilities that are not otherwise possible
with INPUT; in fact, it is not possible with most subprograms.

A number of subroutines in QuickPak Professional take advantage
of the additional power that a polled routine can provide. For
example, the PullDown and PullDnMS menu routines may be called
in either a polled or non-polled manner. This is accomplished by
setting the Action argument in the call to either 1 or 0, respectively.

Crescent Software, Inc. 1-19

Chapter 1 QuickPak Professional

When called in a polled mode, these menu routines allow the calling
program to determine what menu is currently being viewed, which
choice is currently highlighted, and which key was last pressed by
the operator. This allows your program to display a descriptive
message based on the current menu choice while the menu is still
active. When PullDown and PullDnMS are called in a non-polled
manner, your program cannot do anything until the user selects a
choice from the menu or presses Escape.

Another example of a QuickPak Professional polled routine is the
QEdit text editor. This subroutine is a complete word processor
with word wrap, cut, copy, and paste operations, and full mouse
support. Using QEdit in a polled mode lets you monitor what keys
are being pressed even while text is being entered or edited. This
way you can test for specific keys and act on them, without having
to make any changes to the QEDIT.BAS source file.

For example, you may wish to look for a specific function key and
if pressed, change the margins, print the file, or perhaps save the
text to disk. Without the polling capability of this routine, you
would have to wait until Escape was pressed and then display a
menu of choices. Therefore, polling lets you extend the capabilities
of QEdit, and also regain control between keystrokes.

The following example shows how this is done.

1-20

Action= 1 'Action= 1 sets the polled mode

DO
CALL QEdit(Array$(), Ky$, Action, Ed)
IF LEN(Ky$) = 2 THEN 'Test for extended key

Ky= ASC(RIGHT$, 1)
SELECT CASE Ky

CASE 60 'F2
CALL ChangeMargin 'Change the margins

CASE 67 'F9
CALL PrintFile 'Print the file

CASE 68 'FlO
CALL SaveF i le

END SELECT
END IF

'Save the file

LOOP UNTIL Ky$= CHR$(27)
Action= 5

'Loop until user presses Escape
'restore the previous screen
Ed) CALL QEdit(Array$(), Ky$, Action,

Crescent Software, Inc.

QuickPak Professional Chapter 1

Here, QEdit is called with an initial action of 1, which starts it in
polled mode. When QEdit is called this way, it looks at each
keystroke, handles it as required, and then exits the subprogram
without delay. Since QEdit does not test for function keys other
than Fl, the next section of code in the loop checks for the F2, F9,
and F 10 function keys. This code will execute the appropriate
CALL if one of these keys is pressed, and will then loop back to
call QEdit. This process repeats continuously until the user
eventually presses Escape.

It would appear to the typist that everything is happening within
QEdit; however, part of the code that is executing is actually
external to the routine. The DEMOED IT .BAS program shows this
type of polling in context.

Note that this type of extensibility is often associated with Object
Oriented programming. As you can see, this polling technique
provides a similar capability to BASIC subprograms and functions.

USING ACTION PARAMETERS

When you call a pollable QuickPak Professional routine using an
Action value of zero, it behaves like a normal, non-polled
subroutine. Most of the pollable menu routines begin by saving the
underlying screen. Then the menu is displayed, and the user is
allowed to navigate the choices by using the various cursor keys.
When Enter or Escape is finally pressed, the routine restores the
screen to what it had been, erases the menu, and then returns to
your program.

When you call the same routine in polled mode, the internal process
is slightly different. First, you call the routine with an Action of 1,
which establishes the polled mode. But after saving the screen and
displaying the menu, Action is set to 3 by the routine. If a key has
been pressed it is acted on. However, the important point is that
the subroutine returns immediately, regardless of what keys were or
were not pressed.

The next time through the loop with Action set to 3, the routine
skips over the initialization and display code, and goes directly to
the key processing portion. After acting on any keystrokes as
needed, it again returns immediately.

Crescent Software, Inc. 1-21

Chapter 1 QuickPak Professional

This process continues as long as Action is set to 3. If Action is set
to 4, you know that the user has pressed a terminating key (Enter or
Escape). This is a signal for you to examine the values returned,
and to set Action to 5. Action 5 tells the subroutine to restore the
original screen and then exit.

The last Action variable is 2. With Action set to 2, you are telling
the subroutine to redisplay any data passed to it, but without
redrawing the surrounding window. This also resets Action to 3, so
you don't have to assign that value manually to continue polling.
Using an Action value of 2 is useful when you determine that the
current screen information needs to be updated or modified. For
example, QEdit lets you establish any arbitrary row to be positioned
anywhere on the screen. Once you have set the correct parameters
for this, you would then use Action = 2 to force QEdit to update
the display screen.

PASSING THE CNF VARIABLE

The Cnf variable is used by a number of QuickPak Professional
routines. It is a TYPE variable that is used to pass color values and
certain system information to those routines that require them. The
advantage of using a TYPE to relay this information is that only one
parameter is required, although many different values are being
passed.

For example, the PullDown menu subprogram requires several
different colors - text foreground color, background color,
highlight color, inactive text color, and so on. Passing a single
parameter makes the call much simpler. Reducing the number of
parameters also helps to reduce the size of your programs. But
more important, when Cnf is used correctly it will automatically
sense the type of display (color or monochrome) that is being used,
and assign a set of colors to their appropriate values.

An additional benefit of using Cnf is that if you call several
different routines that use Cnf, you will be able to define a
consistent look for your programs, since all the routines will be
using the same color scheme. Cnf also tells the various menu
routines if a mouse is installed in the host PC.

1-22 Crescent Software, Inc.

QuickPak Professional Chapter 1

One of the most common problems that new users experience is
failing to understand how to correctly set up and pass the Cnf TYPE
variable. The process is fairly straight-forward, though perhaps a
bit confusing at first. There are two Include files supplied with
QuickPak Professional that make this process as easy as possible.
These files are DEFCNF.BI and SETCNF.BI, and they are used in
the following manner:

In the main module of your program just after any DEFtype and
DECLARE statements, you will include the DEFCNF.BI file. This
file simply defines the Config TYPE structure, which is used when
dimensioning the Cnf variable. Immediately following that you will
include the SETCNF.BI file. (.BI is a Microsoft convention, and
stands for BASIC Include.) SETCNF.BI also uses the QuickPak
Professional Monitor function to determine the type of display
adapter being used. Additional code then sets the colors fields in
Cnf to the appropriate values. Since SETCNF.BI requires the
Monitor function, you must also declare Monitor in your program.
The code in your main module would appear as follows:

DEFINT A-Z
DECLARE SUB AnySub {A, 8)
DECLARE FUNCTION AnyFunction ()
DECLARE FUNCTION Monitor% ()

'$INCLUDE: 'DefCnf.Bi'
'$INCLUDE: 'SetCnf.Bi'

We suggest that you look at the code in these include files, just so
you can see what they are doing. You can do this either by loading
the files into the QuickBASIC editor, or by selecting "View
included lines" from the QuickBASIC pulldown menus.

In most cases you can merely call the various QuickPak
Professional routines that use the Cnf variable, as long as
DEFCNF .BI and SETCNF .BI have been included in your program
as shown. However, a complication arises when you are calling
one subprogram that, in turn, calls one of the menu programs that
requires Cnf. In this case, you must first pass Cnf to your
subprogram, and then pass it on to the QuickPak Professional
routine that expects it.

Crescent Software, Inc. 1-23

Chapter 1 QuickPak Professional

Say, for example, that you have written a subroutine called
Getlnput, and this routine may occasionally need to display an error
message. The QuickPak Professional routine MsgBox is ideal for
this situation, but it does require the Cnf variable. To make this
work, you would pass Cnf to the Getlnput subroutine as a
parameter, and then call MsgBox. Since Cnf has been passed to the
Getinput subroutine, MsgBox will also be able to access it. This is
shown following.

'MAIN.BAS
DEFINT A-Z
DECLARE FUNCTION Monitor%()
DECLARE SUB MySub(X, Y, Z, Cnf AS ANY)
'$INCLUDE: 'DEF CNF.BI '
'$INCLUDE: 'SETCNF .BI'

CALL MySub(X, Y, Z, Cnf)

SUB MySub(X, Y, Z, Cnf AS Config)

CALL MsgBox(Message$, Wide, Cnf)

END SUB

If Cnf had not been passed into MySub, the Cnf referenced within
MySub would appear to BASIC as a regular numeric variable. This
would cause BASIC to report a "Type mismatch" error, since it
knows that MsgBox is expecting a variable of type Config.

The only additional complication arises if you are calling an
intermediate subprogram or function in another module; you must
then add the TYPE declaration file DEFCNF.BI to that module.
Without including DEFCNF.BI, Cnf would again appear to the
second module as a simple integer variable, and again cause a
"Type mismatch" error message.

Note that in the module-level code, the declaration for the
subroutine that calls MsgBox defines Cnf AS ANY. This is needed
because DEFCNF .Bl has not yet been included, yet we do not want
BASIC to treat Cnf as an integer.

As supplied, Cnf has already been assigned attractive colors for
both color and monochrome monitors. However, you should feel
free to change these colors to whatever you prefer, by simply
modifying the SETCNF .Bl file.

1-24 Crescent Software, Inc.

QuickPak Professional Chapter 1

TO CALL OR NOT TO CALL

Depending on your programming style, you may either prefer to use
the CALL statement to invoke a subroutine, or not use it. If you
do not use the CALL statement, you must declare every routine that
you plan to access. If you do use the CALL statement, then you do
not have to declare subroutines, although you may opt to.
Regardless of whether or not you use a CALL statement, you must
always declare BASIC or assembly language functions.

The following two statements are equivalent in QuickBASIC:

CALL NameFile(OldName$, NewName$)

or

DECLARE SUB NameFile (A$, B$)

NameFile OldName$, NewName$

Although the arguments in the declaration statement do not use the
same names as those in the actual CALL statement, note that they
must be of the same data type.

The reason why you must always declare functions should be clear
when you consider the following BASIC statement:

Print MonthName$(Month)

When the compiler sees this statement, it would assume that you
want to print the string found in the MonthName$ array, element
Month. However, MonthName$ is actually a QuickPak
Professional function that returns a month's name in string form,
given the month's number 1-12. Without an explicit declaration for
this function, QuickBASIC has no way to know that you want to
call a function named MonthName$, as opposed to accessing an
array with that name.

Crescent Software, Inc. 1-25

I

Chapter 1

USING THE QUICKPAK PROFESSIONAL
FILE ACCESS ROUTINES

QuickPak Professional

One of BASIC's few quirks is the way that disk and other errors are
handled. Unlike other languages that let you test the success or
failure of the most recent operation, QuickBASIC instead requires
ON ERROR. It is up to you to first establish a block of code that
will receive control when an error occurs, and then figure out what
happened and where you were before the error occurred. Besides
being unnecessarily convoluted, ON ERROR makes your programs
larger and also makes them run more slowly.

QuickPak Professional lets you avoid ON ERROR by including
replacement file access routines that return an error code. After
any operation that may result in an error, you can simply query the
QuickPak Professional DOSError and WhichError functions. The
short program fragment shows this in context:

CALL CDir("\QB45")
IF DosError% THEN
PRINT "Unable to change to the \QB45 directory"

END IF

All of the QuickPak Professional routines operate this way,
although some routines return additional error information in their
passed parameters. The DOSError function merely tells if an error
occurred, and WhichError lets you determine which one.
WhichError returns the same codes that BASIC does for the same
situations. Both of these routines are designed as functions, and
must therefore be declared.

OPENING FILES

QuickPak Professional includes a complete set of routines that can
optionally replace BASIC's file handling statements. Which you
use depends on your needs, and there are advantages and
disadvantages to both. If you are writing a small program that will
only occasionally be used, using ON ERROR makes a lot of sense.
But for programs where size and performance are critical, using the
QuickPak Professional replacements will probably be worth the
added effort.

1-26 Crescent Software, Inc.

QuickPak Professional Chapter 1

Before a file can be accessed by using either method, it must first
be opened. Unlike BASIC's OPEN statement that accepts an
argument to specify the access mode (INPUT, OUTPUT,
APPEND, BINARY, or RANDOM), the QuickPak Professional
routines operate in binary mode only. We do include routines for
inputting lines of sequential text and accessing fixed-length records.
However, from the perspective of DOS, all file access is purely
binary. When you use BASIC's OPEN, it is BASIC that
remembers the mode, and it is BASIC that prevents you from using
LINE INPUT with a random access file. The QuickPak
Professional file routines make no such distinction, and this added
flexibility is yet another reason to use them.

Unlike BASIC's OPEN, the QuickPak Professional FOpen family
of routines will not create a file if it does not exist. If you plan to
read from an existing file only, then FOpen can be used in the same
way as BASIC's OPEN FOR INPUT. Likewise, if you plan to
write to a file that already exists - if it currently has a length of
zero - then FOpen will also work as expected. However, if you
need to create a file, you must first use FCreate. You can use the
Exist function to determine if a file already exists.

Like BASIC's OPEN FOR OUTPUT, FCreate will create a file if it
does not exist, or truncate it to a length of zero if it does. There
are two additional OPEN replacement routines: FOpenS and
FOpenAll. FOpenS (the S stands for Shared) is intended for use in
a network application, and lets you read and write data to disk while
allowing others read access only. FOpenAll is similar, except it
lets you specify all of the possible sharing options.

The three FOpen routines are similar in that they expect the name
of the file and a Handle parameter. With BASIC's OPEN you
make up a file number, then use the number whenever you need to
access the file. Contrast that with the method used by QuickPak
Professional, where the file number is returned to you. Please
understand that this is the same method that DOS uses, and indeed,
all other high-level languages. It is important to understand that the
Handle is returned to you by these routines, and you should never
assign it yourself.

After you have called one of the FOpen routines, you will check to
see if an error has occurred. For example, an error is possible if
the diskette drive door is open, or if the file to be opened was not
found. You will use the DOSError and WhichError functions to
detect errors, as shown below.

Crescent Software, Inc. 1..,.27

Chapter 1

IF NOT Exist%(FileName$) THEN
CALL FCreate(FileName$)

ENO IF

CALL FOpen(FileName$, Handle%)
IF DOSError% THEN

BEEP
LOCATE MsgRow, 1
PRINT ErrorMsg$(WhichError%)
EXIT SUB

END IF

'no such file
'so create it

'then open it

QuickPak Professional

'check for an error
'sound an alarm
'prepare to display
'print an error message
'bail out

DOSError would detect an error if it had occurred during the
opening process. Then, the WhichError and ErrorMsg$ functions
can be used to display an appropriate message. WhichError returns
an error number, and ErrorMsg$ returns an equivalent string. For
example, if you attempt to open a file that does not exist
WhichError will return 53, and ErrorMsg$ will return "File not
found". If no error occurred, you would continue the program and
either read or write data to the file.

SEQUENTIAL FILES

Normally when you save a sequential file in BASIC, you use either
the WRITE# or PRINT# statements. These statements write a
string to disk, followed by carriage return and line feed characters.
These characters later tell INPUT or LINE INPUT that they have
encountered the end of a line. With QuickPak Professional you
instead use the FPut family of subroutines to write sequential data to
disk. FPut was designed to write as many bytes to disk as are in the
string being written.

This is ideal for binary files, and with only slightly more work,
FPut can also be used for sequential files as well. Since FPut does
not automatically add a carriage return and line feed to the end of
the string that you are saving, you must add these manually:

1-28

Source$= "Crescent Software"
CRLF$ = CHR$(13) + CHR$(10)
CALL FPut(Handle%, Source$+ CRLF$)

'write other data here

CALL FClose(Handle%) 'then close the file

Crescent Software, Inc.

QuickPak Professional Chapter 1

To retrieve sequential data from a file with BASIC you would
normally use the LINE INPUT# command. With Quick:Pak
Professional you will instead use FLinput. FLinput is similar to
BASIC's LINE INPUT statement, except that it too will set an error
flag that may be detected with DOSError should an error occur
while you are reading. You must also create a temporary buffer
string to hold the data as it is being read from disk.

To read data from a file you might first check to see if the file name
is valid, using the Exist function as before. Then you would open
the file and read the data.

IF NOT Exist%(FileName$) THEN
LOCATE MsgRow, 1
Print "Fi le not found"
EXIT SUB

END IF

CALL FDpen(FileName$, Handle%)
Buffer$= SPACE$(82)
Work$= FLinput$(Handle%, Buffer$)

'open the file
'create a file buffer
'Work$ receives data

FLlnput will read data into Buffer$ until it finds a CHR$(13) line
terminator, a CHR$(26) end of file mark, or until Buffer$ is filled.
Please see the FLINPUT.BAS program for a working
demonstration of the FLinput routine.

RANDOM FILES

BASIC uses the GET and PUT commands for accessing random
data files with fixed-length records. GET and PUT can work in
different ways, depending upon the mode in which the file was
opened, and which optional arguments were used with PUT and
GET. QuickPak Professional offers several replacement routines,
with each designed for a specific use.

QuickPak Professional replaces GET and PUT with FPut, FPutR,
FPutRT, FPutRTA, and FPutT, and their counterparts FGet,
FGetR, FGetRT, FGetRTA, and FGetT. The routines containing
an 11 R 11 (random) as part of the suffix will access data in a file at a
designated record number. If the suffix contains a 11 T 11 (TYPE)
then the routine is intended for use with TYPE and fixed-length
string variables. If the suffix also includes an II A", the routine will
read or write all or part of a TYPE or fixed-length string array.

Crescent Software, Inc. 1-29

I

Chapter 1 QuickPak Professional

Code for saving and loading a simple random file using a TYPE
variable could be done as follows:

DEFINT A-Z
DECLARE FUNCTION Exist (FileName$)

TYPE DBase
FirstName AS STRING* 12
LastName AS STRING* 20

END TYPE

DIM DRecord AS DBase
RecSize = LEN(DRecord)

DRecord.FirstName = "Crescent"
DRecord.LastName = "Software"
RecNumber& = 1

FileName$ = "C:\Cust.Dat"
IF NOT Exist%(FileName$) THEN

CALL FCreate(FileName$)
END IF

'All integers please
'Declare all functions

'Define the TYPE

'Create the TYPE variable

'Make something to save

'Just 1 record req'd for
' this example

'Assign the file name
'See if it already exists
'No, so create it

CALL FOpen(FileName$, Handle) 'Open the file
CALL FPutRT(Handle, DRecord, RecNumber&, RecSize) 'Read it
CALL FClose(Handle) 'Close the file

DRecord. FirstName = '"'
DRecord.LastName = ""

'Clear the string

CALL FOpen(FileName$, Handle) 'Re-open the file
CALL FGetRT(Handle, DRecord, RecNumber&, RecSize) 'Get the record
CALL FClose(Handle) 'Close the file

'Print it to show it worked
PRINT DRecord.FirstName, DRecord.LastName

Finally, it is worth mentioning that with random files in BASIC, the
first record number is 1, and the first byte in the file is also
considered to be byte 1. With QuickPak Professional, while the
first record in a random file is still 1, the first byte in a binary file
is byte 0. This is important to understand when specifying a file
offset with FSeek.

1-30 Crescent Software, Inc.

QuickPak Professional Chapter 1

ADDING TO QUICKBASIC

Before we present a complete description of each program, let's
first discuss some of the ways external routines may be added to
QuickBASIC.

QuickBASIC allows calling external routines by name, which is a
tremendous improvement over the older BASIC interpreter, where
exact memory addresses must be known. Further, in addition to
assembly language subroutines, QuickBASIC also allows creating
subprograms in BASIC.

External routines and subprograms are accessed with the CALL
command, and as many variables as required may be exchanged
between them and the main program.

A new feature added to QuickBASIC beginning with version 4
allows invoking a BASIC or assembler subprogram without
requiring the CALL key word, as long as the routine has been
previously declared. This is the approach we have used in several of
the demonstration programs that come with this version of
QuickPak Professional.

All of the QuickPak assembly language routines are contained in the
library files PRO.LIB and PRO.QLB for use with QuickBASIC 4
and BASCOM 6. The PRO7.QLB and PRO7.LIB files are intended
for use with BASIC PDS. Note that if you are using BASIC PDS
and compiling with near strings from the DOS command line, using
PRO.LIB will result in slightly smaller programs.

The QuickPak Professional BASIC routines are provided in source
format only, and are intended to be added by you to your programs.
The BASIC programs will be added by loading them as modules
using the Load option of BASIC's file menu.

Besides the library files, each individual assembler routine is
available in source code format to aid your understanding of how
they work. It is not necessary to know assembly language to use
QuickPak Professional, and we provide the source code solely for
the benefit of those who are interested.

If you are new to QuickBASIC and this all seems a bit confusing,
don't worry-the instructions for each program contain all of the
details, and many complete examples are included on the QuickPak
Professional disks.

Crescent Software, Inc. 1-31

Chapter 1 QuickPak Professional

USING THE ASSEMBLER ROUTINES

The easiest way to begin is to start up QuickBASIC, and load the
QuickPak Professional Quick Library into the editor. From the DOS
prompt enter:

QB /L PRO

If you are using BASIC PDS instead enter:

QBX /L PRO?

This starts QuickBASIC, and tells it to load the QuickPak
Professional Quick Library into memory. Once you are in
QuickBASIC's editor, you may begin using all of the routines.
Numerous example programs are provided both to show how the
various BASIC and assembler routines are used, and to provide
ideas for your own programs. For example, QD .BAS is a complete
DOS file utility, and READDIRS .BAS shows many of the other
QuickPak DOS services in a useful context.

VERY IMPORTANT!

Most of the QuickPak Professional routines and functions that use
numeric variables expect integers. Using single or double precision
values is guaranteed to cause a crash. The only exceptions are those
routines that are specifically intended for use with floating point or
long integer variables.

Also, many array manipulation routines are provided, and it is up to
you to insure that the correct type and number of elements are
specified.

As a safety precaution, we have provided a BASIC file named
DECLARE.BAS that shows the correct declarations and calling
syntax for each routine.

1-32 Crescent Software, Inc.

QuickPak Professional Chapter 1

USING THE BASIC ROUTINES

External routines written in BASIC will be added to your programs
by loading them as modules. Unlike earlier versions of
QuickBASIC (or indeed, most application programs) the
QuickBASIC editor allows you to load and manipulate more than
one program file at a time.

Once you have started QuickBASIC, files may be brought into the
editor with either the Open or Load commands. Using Open causes
QuickBASIC to first clear out any programs that may already be in
memory. Then, it loads the selected file as the "main" program. If
you use Load, the named file is read into memory, but without
disturbing other program files already loaded. Thus, you will use
Load to add the QuickPak BASIC routines to your own programs,
and Open to run their demos.

Each loaded module is entirely separate. However, subprograms
and functions in one module may be freely called by any other
module. When the main file is saved, a "make" file (with a .MAK
extension) is created automatically by QuickBASIC. Then each time
you Open the main program again, the make file is examined, and
all of the modules that had previously been loaded will be read in
automatically.

One final note about the BASIC subprograms and functions is that
most of them have a demonstration program to show how they are
used. Some provide a fairly substantial demo, for example
DEMOSS .BAS shows all of the steps needed to set up and call the
spreadsheet program SPREAD.BAS.

Crescent Software, Inc. 1-33

I

Chapter 1 QuickPak Professional

FUNCTIONS

Another interesting capability of QuickBASIC 4 and later not
present in earlier versions of the BASIC compiler is that a
user-defined function can actually do something, as opposed to
merely calculating a result. For example, the ScanFile function first
opens a file, then searches for a specified string, and finally returns
where in the file the text was found.

Beginning with QuickBASIC 4, functions may also be written in
assembly language. In the past, the only way an assembler routine
could return information was to pass it a variable, and then examine
the variable when the routine finished.

Now, however, assembly routines may return a value directly. This
feature is used extensively in QuickPak Professional in those cases
where returning a value is appropriate. It is important to understand
that assembler functions must be declared before they can be used.
For example, consider the GetDrive function which returns the
currently active drive:

PRINT "The current drive is "; CHR$(GetDrive%)

If the function hasn't first been declared, BASIC would have no
way to know that GetDrive% isn't simply an integer variable. Even
though QuickBASIC will place the appropriate DECLARE
statements for BASIC subprograms and functions in your program
automatically, it will not do this for functions or subroutines
contained in a Quick Library.

QuickPak Professional assembler functions are declared as:

DECLARE FUNCTION GetDrive%()

Here, the empty parentheses indicate that the function does not
require or expect any incoming parameters. Functions such as
FileSize that do require variables will have the parameters given in
the argument list:

DECLARE FUNCTION FileSize&(FileName$)

1-34 Crescent Software, Inc.

QuickPak Professional Chapter 1

Functions are also valuable because they may be used directly
within BASIC test, assignment, or PRINT statements:

IF ReadTest%("A") THEN PRINT "Drive A is ready"

or

CALL QPrint(X$, OneColor%(FG%, BG%), 0)

or

PRINT Maxint%(X%, Y%)

Finally, all of the QuickPak Professional functions that return a true
or false value use -1 for true and O for false to allow the optional use
of the BASIC NOT operator:

IF A ltKey THEN

or

IF NOT ReadTest%("B") THEN

Crescent Software, Inc. 1-35

I

Chapter 1 QuickPak Professional

PASSING VALUES

All of the calling conventions for each of the QuickPak routines are
shown beginning in the next section, though some interesting
features of QuickBASIC are worth mentioning here.

Arguments that are passed to external programs do not always need to
be variable names. As an example, to clear a window on the screen
from 5,10 to 10,70 the numbers themselves may be specified:

CALL ClearScr(5, 10, 10, 70, 7, -1)

Numeric and string expressions are also valid:

CALL ClearScr(X% + 3, 10, X¾ + 8, 70, 7, -1)

or

CALL BPrint("Testing" + Array${15) + LEFT$(Y$, 5))

And when using SetDrive, the drive letter may be given directly:

CALL SetDrive("A")

When you do this, QuickBASIC first creates a temporary variable
set to the value or expression being passed, and then passes the
temporary variable to the routine. For quoted or concatenated
strings, a temporary variable comprising the various pieces is
created and passed.

Notice that when BASIC finishes, the temporary variable is not
discarded. Of course, when an assembler routine will be returning
information to the calling BASIC program, these shortcuts will not
work and a variable must be used.

Notice that a bug in QuickBASIC versions through 3.0 does not
correctly handle a concatenated string being passed to an assembler
routine. If you are using a version of QuickBASIC prior to 4, a
temporary string should be created first, and then passed as a single
variable:

1-36

Temp$ = "Testing"+ Array${15) + LEFT$(Y$, 5))
CALL QPrintO(Temp$, Colr%)

Crescent Software, Inc.

QuickPak Professional Chapter 1

Also notice that when values are passed to an external routine as
variables, any variable name may be used. Even if a BASIC
subprogram uses one set of names to define the incoming variables,
you are free to substitute other names when you call it.

Non-integer values may also be passed to subroutines and functions
by using the correct type identifier suffix:

CALL Routine(!!, 2&, 3#)

Here, the one is passed as a single precision, the 2 is a long integer,
and the 3 is forced to a double precision.

Notice that variables of one type may also be converted to any other
type on the fly with BASIC's built-in conversion functions. For
example, if you already have a value in a single precision variable
and want to pass it to a routine that requires an integer, you would
use CINT (Convert to Int) like this:

CALL QPrint(X$, CINT(SColor!), Page%)

As long as the variable SColor! is within the legal range for an
integer, BASIC will first copy it into a temporary location, and then
send the copy to QPrint. Likewise, you could pass a single precision
value to one of the QuickPak Professional financial functions that
expect a double precision variable with the help of CDBL:

X! = QPFVP#(CDBL(Fv!), CDBL(Intr!), Term%)

or

PRINT QPRDUND$(CDBL(Amount!), Places%)

Crescent Software, Inc. 1-37

I

Chapter 1 QuickPak Professional

PASSING ARRAYS

Passing an array to an assembler routine is quite different from
passing a simple variable. Although BASIC allows sending an entire
array to a BASIC subprogram or function by following the array
name with empty parentheses, this method does not work with the
QuickPak assembler routines.

In QuickBASIC version 4 and later, all of the QuickPak routines
that operate on a conventional (not fixed-length) string array require
an extra step when they are called. In previous versions of
QuickBASIC it was sufficient to simply use the starting array
element as part of the call. Once the routine knew where the first
element was located, it could count on subsequent elements being in
adjacent locations.

With current versions of BASIC; however, a new calling method is
needed. Though it would appear to require more effort, Microsoft
has now decided to instead make a copy of the array element, and
send the address of the copy to the assembler routine. Of course,
the address of a copy of an array element has no relevance to the
actual location of the array.

The best way around this problem is to use a combination of
V ARPTR and the new BYV AL key word, as shown in the string sort
example below:

CALL SortStr(BYVAL VARPTR(Array$(1)), Size%, Dir%)

Using V ARPTR forces QuickBASIC to obtain the true address of
the array element, and BYV AL then sends the value of the address
to SortStr. Usually, addresses are passed to assembly routines
rather than values, however the address of an address would not be
appropriate.

Numeric and TYPE arrays must be handled yet another way. As
with string arrays, QuickBASIC will normally make a copy of the
named element in a numeric array, rather than pass the original
address directly. Further, because these arrays may be located
anywhere in memory, the assembler routines that operate on them
need to know both the address and the segment. The solution this
time is to use the SEG command:

CALL Sortl(SEG Array%(!), Size%, Dir%)

1-38 Crescent Software, Inc.

QuickPak Professional Chapter 1

When QuickBASIC sees that SEG is used as part of a call, it
understands that the actual segment and address of the element are
needed, and passes both of them unchanged to the named routine.

If a subprogram or function has been declared with BYV AL or SEG,
it is not necessary to use it again each time later:

or

DECLARE SUB Delete(BYVAL Address%, NumEls%)
CALL Delete(VARPTR(Array$(1)), NumEls%)

DECLARE SUB Addint(SEG Element%, Value%, NumEls%)
CALL Addlnt(Array%(Start), Value%, NumEls%)

Notice in the first example that the Address% variable is an integer.
This is necessary because V ARPTR returns an integer value that
corresponds to the variable's address.

Crescent Software, Inc. 1-39

Chapter 1 QuickPak Professional

PASSING FIXED-LENGTH STRING AND TYPE ARRAYS

Passing a fixed-length string array or a TYPE array to a BASIC
subprogram is also possible, even though all of the examples in the
QuickBASIC manuals skirt the issue by showing the various arrays
as being SHARED. The short program below illustrates the steps
required to do this.

Notice that to pass an array of fixed-length strings it must be declared
as a TYPE array, even if the TYPE is comprised solely of a single
string member.

1-40

TYPE FLen
Stuff AS STRING* 11

END TYPE

DECLARE SUB FLSub (Param() AS FLen)
DIM A(lOO) AS FLen

A(B9).Stuff = "Testing #89"
CALL FLSub(A())

SUB FLSub (Array() AS FLen)
PRINT Array(89).Stuff

END SUB

'define the TYPE
'before you refer
'to it later

'declare the sub
'DIM the array

'assign element 89
'call the subprogram

'refer to the TYPE
'print the element

Crescent Software, Inc.

QuickPak Professional Chapter 1

LINKING WITH QUICKPAK PROFESSIONAL

The PRO.QLB and PRO7.QLB Quick Libraries are intended to be
used only while you are in the QuickBASIC editing environment.
Once you have completed developing and testing a program, you will
need to create a final stand-alone .EXE file before it can be run from
DOS. If you are compiling and linking manually from DOS, then you
would specify PRO.LIB like this:

LINK basicprogram , , NUL, PRO.LIB

If you are using BASIC PDS with far strings, then you must link
with PRO7.LIB as follows:

LINK basicprogram, , NUL, PRO7.LIB;

If you prefer, you can start LINK without any options, and wait for
it to prompt you for the information it needs.

One important point you should be aware of is that only those
routines that are called will be added to your program. Many people
mistakenly believe that if they link with a library such as PRO.LIB,
all of the routines contained in the library will be added to their
program. However LINK is very smart, and knows to add only the
routines that are actually needed. (Also see the section entitled
"Compiling and Linking from DOS" for an important warning about
how QuickBASIC 4.0 invokes LINK from within the editor.) You
should also understand that more than one library can be specified
when linking. For example, if you need assembler routines from both
QuickPak Professional and the Graphics Workshop, you may tell
LINK to use both of them:

LINK basicprogram ,, NUL, PRO GW

Further, single object modules may also be added in at link time,
even if they are not in a library at all:

LINK basicprogram object ,, NUL, PRO GW

If you do wish to combine several libraries into a single file, that is
quite easy too. Though the LIB library manager is usually employed
to add or remove object modules, you may also add one or more
complete libraries like this:

LIB libname +libname2. lib +libname3. lib

Crescent Software, Inc. 1-41

Chapter 1 QuickPak Professional

One useful LINK option you should be aware of is the /EX
command line switch. When LINK is invoked with /EX, it creates
an .EXE file in a special "packed" format. Not unlike the various
archive programs, your program's code and data are compressed to
take up less disk space. When the program is run, the first code that
actually executes is an unpacking routine that puts everything back
together again.

For programs compiled with QuickBASIC 4.0, /EX is intended to
be used only with stand alone programs that do not require the
QuickBASIC BRUN support module. Further, though a packed
program will take up less disk space, it of course requires the same
amount of memory when it is run.

1-42 Crescent Software, Inc.

QuickPak Professional Chapter 1

BUILDING QUICK LIBRARIES

Quick Libraries enable you to access programs and functions
written in languages other than BASIC, while you are within the
QuickBASIC editing environment. Besides the assembly language
programs included with QuickPak Professional, this feature also lets
you call routines written in C, Pascal, and any of the other
supported Microsoft languages.

All of the QuickPak Professional assembler routines are already
contained in the PRO.QLB library. However, there may be
occasions when you need to build a Quick Library. For example,
you may wish to incorporate routines of your own as well as those
provided with QuickPak Professional.

Quick Libraries are created using the version of LINK that comes
with your version of BASIC. Microsoft has documented many of
the capabilities of LINK in the QuickBASIC manuals, though there
are additional useful features you should be aware of.

Normally, LINK expects a list of object file names to be specified
for inclusion in the Quick Library being built. But what Microsoft
failed to mention anywhere is that you can also combine one or
more entire .LIB libraries as well. (A .LIB library simply contains
one or more .OBJ modules in a single file.) This feature is
particularly useful if you need to combine several Crescent .LIB
library files into a single Quick Library.

To create a new Quick Library comprised of one or more .LIB and
.OBJ files, invoke LINK like this:

LINK /Q Ll.LIB L2.LIB OBJl OBJ2, LIBNAME, NUL, BQLB45

The /Q option tells LINK that it is to create a Quick Library rather
than an .EXE file. Ll.LIB and L2.LIB are the library files being
incorporated into the new Quick Library, and OBJ 1 and OBJ2 are
object modules. Of course, you can mix and match library and
object files in any order you would like.

Crescent Software, Inc. 1-43

Chapter 1 QuickPak Professional

The .LIB extension is very important, because without it LINK
would be looking for files with an . OBJ extension. Notice that an
extension is not needed for the object files.

The LIBNAME parameter is the name you want to use for the new
Quick Library being built. Without the LIBNAME parameter, LINK
will default to the same name as the first .LIB or .OBJ file in the list.
In the example above, the resultant file would have been named
Ll.QLB if LIBNAME had been omitted. In that case, though, the
comma "place holder" is still required:

LINK /Q Ll.LIB L2.LIB OBJ! OBJ2, , NUL, BQLB45

The NUL parameter prevents LINK from generating a useless list
file, and BQLB45 is a special library supplied with QuickBASIC.
BQLB45.LIB has nothing to do with QuickPak, and is required for
making any Quick Library that will be used with BASIC. Note that
BQLB45 may have a slightly different name, depending on the
version of QuickBASIC. For example, if you are using BASIC 7
PDS the library is named QBXQLB.LIB.

One final important note about making Quick Libraries is the /SEG
option. When many separate object modules are being combined, the
number of code and data segments may exceed LINK's default
maximum of 128. When we create PRO.QLB from PRO.LIB, we
always tell LINK to allow for up to 500 segments like this:

LINK /Q /SEG:500 PRO.LIB , , NUL, BQLB45

1-44 Crescent Software, Inc.

QuickPak Professional Chapter 1

BUILDING LIBRARIES FOR QUICKBASIC 2 AND 3

Versions of QuickBASIC prior to 4 use a special program called
BUILDLIB.EXE to create libraries for use in the editing
environment. As with LINK, BUILDLIB expects a list of object file
names to know what it is to include in the library. And again,
combining one or more .LIB files is both undocumented yet simple.
In this case, however, the /L option is required:

BUILDLIB /L OBJ! OBJ2, LIBNAME, NUL, Ll.LIB L2.LIB

Note that Microsoft supplies a special program called PREFIX.OBJ
on the QuickBASIC 2.0 and 3.0 program disks, and recommends
that you include it in all of the libraries that you build. Also on the
QuickBASIC 2 and 3 disks are several object files that contain other
routines you may need.

If you are using BUILDLIB (or LINK for that matter) to create a
library comprised of many separate object modules, you may receive
a "Too many segments" error message. If this happens you will need
to use the Segment option like this:

BUILDLIB /L /SEG:3OO OBJ! OBJ2 ...

In fact, there are a number of LINK and BUILDLIB options that for
some unknown reason Microsoft has failed to document in the QB 2
and 3 manuals. To see a list of the options that are available with any
given version, start BUILDLIB (or LINK) with the /HELP command:

BUI LDLI B /HELP

Crescent Software, Inc. 1-45

I

Chapter 1 QuickPak Professional

ADDING BASIC PROGRAMS TO A QUICK LIBRARY

With earlier versions of QuickBASIC it was often advantageous to
add pre-compiled BASIC programs into a library. Since those
versions always compiled an entire program each time you made
any changes, pre-compiling could save an enormous amount of
time. Those routines that have been completed and tested could be
accessed, without having to wait for them to be compiled over and
over.

With QuickBASIC 4 we recommend that you not do this for several
reasons. First, because the QB editor is really an interpreter, there
will be no significant decrease in the time needed before your
program starts to run. Second, any routines that are in a Quick
Library may not be traced or debugged. The final reason requires a
bit of explanation.

The BC compiler can produce two very different types of programs.
The BCOM type is a stand-alone program that can run without
requiring the BRUN run-time module. Many programmers prefer
this method because it creates the simplest type of program. Also, a
BCOM program usually requires the least amount of memory when
it runs.

BRUN programs require the presence of a run-time module each
time they are invoked from the DOS command line. In situations
involving many program modules that are chained together,
compiling a program for BRUN makes a lot of sense. Each program
file is substantially smaller because the BASIC language routines
are all contained in the run-time module, and don't have to be added
to each program.

What complicates the issue is when a BASIC program is being
compiled for inclusion in a Quick Library, some versions require it
to be compiled as a BRUN program without the /0 option. Once
you have completed development and are ready to create a
stand-alone .EXE program, you must re-compile each of the
modules, this time using the /0 BCOM option.

If you forget to do this and combine a BCOM main program with
one or more BRUN modules, your final program may not work,
and you'll have no indication of what went wrong. Neither BC nor
LINK will report the error.

1-46 Crescent Software, Inc.

QuickPak Prqfessional Chapter 1

COMPILING AND LINKING FROM DOS

For many programs, you can simply let QuickBASIC do all the
work, and create an .EXE program directly from within the editing
environment. But there are several disadvantages to doing this, and
we recommended that you compile and link from the DOS
command line manually. This is especially true if you are using
QuickBASIC 4.0.

One very important reason is that you can specify exactly the
options that you want to add to your program. For example, even if
you are not using any of the BASIC communications features, that
code will otherwise be added to your program. Further, if you are
using any external programs in a Quick Library, you must be sure
to have a parallel .LIB library file that has the same name and
contains all of the same routines.

Worse still, if you link with a library such as PRO.LIB,
QuickBASIC 4.0 tells LINK to add all of the routines from the
library. CW e can only assume that this is a bug-they couldn't have
done that on purpose, could they?) The whole point of using a
linker is that it should add only those procedures that your programs
call for. Finally, because of the way the QuickBASIC 4.0 editor
invokes LINK, programs comprised of many separate modules
simply cannot be linked.

When QuickBASIC 4.0 runs LINK to combine all of your various
program modules, it places their names on a single command line.
But since DOS limits the length of a line to 127 characters,
attempting to link more than ten or so modules will fail. Of course,
even if you compile and link manually as we recommend, you will
still face this limit. The best solution is to use a LINK response file.

Fortunately, Microsoft has fixed these problems beginning with
QuickBASIC 4.5.

Crescent Software, Inc. 1-47

Chapter 1 QuickPak Professional

RESPONSE FILES

When you need to link a large number of modules, the most
efficient way to tell LINK their names is with a response file. A
response file merely contains the answers for all of the various
LINK prompts, and it can greatly simplify your job by eliminating a
lot ofrepetitive typing. Further, since the answers are contained in
a file, the file can be edited as needed.

There are two types of response files that you should be familiar
with-the type used by LINK, and the type used by the LIB.EXE
library manager. Each serves a similar purpose, but they use a
slightly different syntax.

A LINK response file contains a list of file names to be linked
together. When more names must be given than can be entered onto a
single DOS command line, a plus sign (+) is used as a
line-continuation character. A typical LINK response file looks like
this:

Object! Object2 Object3 Object4 +
Objects Object6 Object? Objects+
Object9 ObjectlO

Rather than entering all of the object names when you start LINK,
instead give it the name of the response file preceded by an "at" sign
(@) as shown below.

LINK [/options] @filename.ext

A LIB response file uses a slightly different format:

+Object! +Object2 +Object3 +Object4 &
+Objects +Object6 +Object? +Objects &
+Object9 +ObjectlO

The plus signs tell LIB that the named object module is to be added
to the library. Notice that a LIB response file uses an ampersand
(&) as the continuation character.

1-48 Crescent Software, Inc.

QuickPak Professional Chapter 1

EXTRACTING OBJECT MODULES FROM PRO.LIB

All of the QuickPak Professional assembler routines are provided
both in library files and in assembler source code. There are very
few situations in which you would need access to the individual
object modules. However, extracting one or more object modules
from the .LIB library is actually quite simple.

As we have already seen, LIB uses the plus sign followed by a file
name to indicate that the file is to be added to the current library. To
extract an object file you would instead use an asterisk. The example
below shows how to extract object files for the QuickPak QPrint and
APrint routines contained in PRO.LIB.

LIB PRO *QPrint *APrint

After entering this command, two new files will have been
created-QPRINT.OBJ and APRINT.OBJ.

These are only some of the many useful options you can use with
LIB and LINK, however discussing all of them is beyond the scope
of this documentation. For more information you should refer to the
manuals supplied by Microsoft.

Note that it is not usually necessary to extract object files from the
QuickPak Professional libraries. If you merely need to create a
subset Quick Library to preserve memory in the QB editor, the
MakeQLB utility we provide will do this for you automatically.
MakeQLB is described in the Miscellaneous chapter of this manual.

Crescent Software, Inc. 1-49

Chapter 1 QuickPak Professional

USING INTEGERS

You will notice that nearly all of the demonstration programs we
have provided begin with DEFINT A-Z as the very first statement.
Though this is of course entirely up to you, we strongly recommend
that you use this practice in all of your programs. Besides
guaranteeing that the variables passed to the QuickPak assembler
routines are integers where appropriate, this will also make your
programs both faster and smaller.

Integers require the least amount of memory for storage, and math
operations on integers are much faster than for any other type of
variable. Of course, when an integer is not adequate for a given
situation, you should use a variable type that is. If at all possible,
however, use long integers if you simply need to accommodate
larger numbers.

Even though a long integer occupies the same amount of memory as a
single precision variable, most math operations on long integers will
be considerably faster. Long integers are also more accurate in
situations involving repeated calculations, to avoid rounding errors.
For example, if many dollar amounts are to be added together, a
common technique is to treat all of the values as pennies. Then, when
the final result is printed, a single floating point divide will return the
actual dollar value:

Total&= 0
FOR X = 1 TO 3000

Total&= Total&+ Value&(X)
NEXT
PRINT USING "The total is$######,.##"; Total&/ 100

1-50 Crescent Software, Inc.

QuickPak Professional Chapter 1

ELIMINATING "ON ERROR"

Many of the assembly language routines provided with Quick:Pak
Professional may at first appear to duplicate functions built into the
BASIC language. For example, we provide routines to create and
remove subdirectories, delete and rename files, plus many other
services that BASIC can already do directly.

Unfortunately, there are several problems with the way that DOS
errors are handled by BASIC. With the introduction of
QuickBASIC 4.0, error handling has become even more
complicated and convoluted. It seems to us that if you attempt to,
say, open a file for input that isn't there, your program should be
able to know that right away. Having to first specify where to
GOTO if an error occurs is both non-intuitive and inconvenient.
Further, using ON ERROR creates programs that are both larger
and slower.

Because of these problems with ON ERROR, we have provided a
number of DOS and BIOS routines to bypass BASIC altogether, and
manipulate printers and disk files directly. In all cases, these
routines are called with arguments similar to those used by BASIC.
However, rather than use ON ERROR to direct your program to an
error handler, you may simply query the new reserved "variables"
DOSError% and WhichError%.

Of course, an external toolbox package can't really add new
reserved words to QuickBASIC. Rather, these are integer functions
that indicate whether or not an error occurred on the last DOS
operation, and if so which one. Because these are designed as
functions for use with QuickBASIC 4, they must be declared before
they can be used.

This method allows you to quickly determine if an error has occurred
without having to constantly specify new locations
for error handling in each portion of a program. For example,
deleting a file using the QuickPak KillFile routine is as
simple as:

CALL KillFile(FileNarne$)
IF DOSError% THEN PRINT Fi leNarne$; " wasn't there"

or

CALL Ki llFi le("XYZ.DAT")
IF NOT DOSError% THEN PRINT "XYZ.DAT was deleted"

Crescent Software, Inc. 1-51

Chapter 1 QuickPak Professional

Many other services are available to test a disk drive for reading
and writing, lock and unlock network files, send text to a printer,
and so forth.

The QuickPak Professional file services are also handy for use with
the original BASCOM 1 compiler. Many programmers are still
using that version because it creates programs that are much smaller
than those produced by QuickBASIC. But BASCOM 1 does not
support path or directory names, and these services nicely fill that
gap. Note, however, that BASCOM 1 does not support using
functions such as DOSError%.

When using any of the QuickPak Professional file routines, it will
be up to you to keep track of the file handle numbers that DOS
assigns. When a file is opened using the BASIC OPEN command,
the file number that will be used for subsequent references to the
file is determined by you. BASIC then maintains an internal table of
file numbers, based on the ones you have chosen and those that
were assigned by DOS.

Internally, it is actually DOS that assigns the file numbers, and
BASIC simply translates the numbers for you. But when an
assembly language routine such as FOpen opens a file, it is up to
your program to remember the number that DOS assigned.

Notice that both the QuickPak Professional file routines and those
provided by QuickBASIC may be used together in the same program.
QuickBASIC provides the FILEA TIR command to determine the
DOS file handle for any file it has opened, based on the file number
you originally specified. The example below shows how to use
FILEA TIR to obtain the DOS handle:

Handle%= FILEATTR(FileNumber, 2)

If you had originally opened the file as #1, then the FileNumber
variable above would be 1 and Handle will receive the equivalent
DOS handle associated with that file.

1-52 Crescent Software, Inc.

QuickPak Professional Chapter 1

MULTI-TASKING MENUS

One of the most exciting capabilities we have provided in QuickPak
Professional is a system of menus that can simulate multi-tasking.
Where most menu programs simply sit in an empty loop waiting for
a key press, both the pull-down and BASIC vertical menu
subprograms let you continue your program if you want.

To accomplish this, a new "Action" parameter (Action%) has been
added to the calling sequence. Depending on the setting of this
variable, the menus can be instructed to operate in a number of
different ways. Besides the Action variable about to be described,
these menu programs also make use of two special $INCLUDE
files-DEFCNF and SETCNF. These are described separately in
the section entitled "SETCNF and DEFCNF" elsewhere in this
manual, and we will not belabor them here.

The Action variable has six different possible settings, to tell
PullDown and VertMenu how they are to behave. Each of the
possible Action values is described in detail below. We should also
mention that while mouse support is built in to the pulldown and
vertical menus, you may easily remove that code if you don't need
mouse support. The portion of the programs that process the mouse
are clearly marked showing what you should REM out or delete.
Search for "Rodent" from within the QuickBASIC editor.

If Action is set to zero, then the menus will operate the way you
would expect a "normal" menu to work. That is, the underlying
screen is first saved, then the menu is displayed, and finally an
INKEY$ loop repeatedly waits for the user to press a key or a
mouse button. Once a key or mouse button has been pressed, the
original screen is restored, and control is returned to the calling
program. The Choice variable(s) may then be examined to see what
selection the user chose.

When Action is set to 1, both PullDown and VertMenu simply save
the screen and display themselves. Control is then returned to the
calling program immediately, however Action is also set to 3 for
subsequent calls. Since Action 3 is how you will be polling the
menu subsequently, this saves you an extra step.

Crescent Software, Inc. 1-53

Chapter 1 QuickPak Professional

Setting Action to 2 lets you re-display the menu, in those cases
where it may have been overwritten by another, possibly
overlapping, menu. Action 2 also resets itself to 3 for subsequent
calls. If the menus are called with Action equal to 3, the keyboard
and mouse are merely polled to see if a key or button has been
pressed.

If Action is still set to 3 when the menu returns, it means that no
keys or mouse buttons were pressed.

If Action is returned set to 4, the user either made a selection or
pressed Escape. In this case, the Choice, Menu, and Ky$ variables
should be examined.

The last Action value is 5, and this simply tells VertMenu or
PullDown to remove itself and restore the original screen.

If you intend to create stacked menus, you should be aware of one
important point. Because each menu saves its own underlying
screen, the screen that was saved first will be destroyed when the
menu is called again. This means that it is up to you to save each
screen in succession manually, except for the last one. This may be
done either manually using ScrnSave and ScrnRest, or automatically
with the WINDOMGR.BAS subprogram.

DEMOMENU.BAS provides a complete demonstration of using
PullDown and VertMenu in a multi-tasking context.
DEMOPULL.BAS and DEMOVERT.BAS are also provided to
illustrate the minimum steps needed to call these routines.

1-54 Crescent Software, Inc.

QuickPak Professional Chapter 1

BIT ARRAYS

Before the introduction of QuickPak Professional, the smallest type
of variable you could use in BASIC was an integer. In cases where
a program needs the range of values offered by integers, using them
makes a lot of sense. But when the values are very small and there
are a lot of them, an integer can waste a considerable amount of
memory.

One effective solution is to create a "byte" array by defining a string
variable with a length equal to the number of elements that are needed:

X$ = STRING$(Size, 0)

Each "element" can hold a value between O and 255, and with only
a little extra work, you can coerce the range to be from -128 to 127.
But often, all that is really needed is a simple True or False type of
variable, and even using the individual characters in a string will be
wasteful.

Three routines are provided to manipulate what we call Bit arrays.
Like byte arrays, a string variable is used for the actual storage,
however each character in the string really represents 8 separate
elements. Thus, creating a Bit array with a size of 1000 elements
will occupy only 125 bytes, as opposed to the 2000 bytes that an
integer array would require. At sixteen to one, this represents a
substantial savings indeed!

The two Bit routines that assign and retrieve array elements are
written in assembly language, and a BASIC subprogram is provided
to "dimension" the array. Because an assembler routine cannot easily
create strings or change their length, this part must be done in
BASIC. Of course, creating the string is very simple, and you could
just as easily use the formula shown below.

Array$= STRING$(NumEls \ 8 + 1, 0)

SetBit and GetBit may then be used to set and get the various
elements as they are needed.

Crescent Software, Inc. 1-55

Chapter 1 QuickPak Professional

THE QUICKPAK PROFESSIONAL EDITOR AND SPREADSHEET

Two of the programs included with QuickPak Professional are a
complete spreadsheet, and a full-screen text editor. Each of these is
intended to be added to your programs as a module, and then called
when needed. This section describes both subprograms, and
provides additional details on how they will be accessed by your
programs.

QEdit - The QuickPak Professional Editor

The QEdit editing window may be positioned anywhere on the
screen, and sized to nearly any number of rows and columns. It
features on-line help, full mouse support, word-wrap, horizontal
and vertical scrolling, as well as block operations for insert, delete,
and copy.

Notice that the QEdit help text and paste buffer are stored outside of
BASIC's normal string space, to leave your program as much string
memory as possible. The technique used to accomplish this is
described in detail in the Appendix of this manual.

All of the standard editing keys are supported. For example, Home
and End move to the beginning and end of the line, the PgUp and
PgDn keys scroll the screen by pages, and Ctrl-PgUp and
Ctrl-PgDn move to the first and last lines respectively. The cursor
may also be moved to the top or bottom of the edit window with the
Ctrl-Home and Ctrl-End keys.

Similar to the QuickBASIC editor, QEdit uses the Ctrl-Left and
Ctrl-Right arrow keys to move the cursor by words, and blocks are
marked with any of the Shift-Cursor keys. Notice that blocks may
also be marked using a combination of the Shift and Ctrl arrows to
jump by whole words. Beyond the usual block operations, however,
QEdit also supports block operations on columns.

To mark a block in sentence mode, place the cursor at the beginning
of the block and press the Shift-Right arrow key. The marked block
will be highlighted as the cursor travels over the text. Alternately,
entire lines may be marked by placing the cursor at the desired
starting point and pressing the Shift-Down arrow key.

To mark a column, place the cursor at the upper left corner of the
block and press the Shift-Right arrow key until the highlight extends
to the desired right edge. Then, press Shift-Down until the bottom
of the block has been reached.

1-56 Crescent Software, Inc.

QuickPak Professional Chapter 1

Regardless of which marking mode is used, the block will be
captured as soon as any non-marking key has been pressed. If either
Del or Shift-Del is pressed, the block will first be captured and then
deleted. To paste the block from the buffer into the text at the
current cursor location, simply press Shift-Ins.

For users that have a mouse, the text may be scrolled, new margins
set, and the editing window may be moved or resized dynamically
while editing. Using a mouse for scrolling the text is done almost
exactly like the QuickBASIC editor. That is, you may click the left
button on the scroll bar icons at the bottom or right edge and move
them, or press and hold the left button on the arrow icons.

One improvement you will notice over the way QuickBASIC works
is that QEdit actually scrolls the text while you move the scroll bar.
Where the various Microsoft editors make you release the mouse
button before you can see how far you actually scrolled, QEdit
provides immediate feedback.

Marking a block of text with a mouse is also improved over the
QuickBASIC method in that marking may be on columns. As when
using the keyboard to mark a block, simply press and hold the left
button while sliding the mouse to the right, and then move down to
define a column. Moving downward first will instead mark in
sentence mode.

To resize the window, press the left mouse button at either the
upper left or lower right corner of the editing window, and simply
drag the corner to its new location. Setting a new right margin is
just as easy. Click on the right margin indicator at the top of the
screen and move it. Please understand that if the document being
edited is very large, there will be a small delay because the entire
text must be rewrapped to the new margin setting.

All of the code to process block operations is located in a single
section of the QEdit subprogram. This way you can easily remove
or REMark out those lines, to reduce the size of your program if
that feature is not needed. All of the mouse code has also been
placed into a single section of the program for the same reason.
Search the QEDIT.BAS source file for the text "Mouse Handling"
for further instructions.

The call for QEdit is fairly simple to set up, as illustrated in the
DEMOEDIT .BAS demonstration program. Your program will need
to dimension a conventional (not fixed-length) string array to hold
the lines of text. The size to which the string array is dimensioned
dictates the maximum number of lines that may be entered.

Crescent Software, Inc. 1-57

I

Chapter 1 QuickPak Professional

If you intend to present a blank screen to your user, then no
additional steps are needed to prepare the array. If you already have
text that is to be edited, it may be placed in the array before QEdit
is called.

The text may also be sent to QEdit as a single long line in the lowest
array element. In that case, it will be wrapped automatically before
being presented for editing. If you intend to read files prepared by a
word processor that places each paragraph on its own line (such as
XyWrite), you will probably want to read each line into every other
element in the string array. This will preserve the spacing between
paragraphs, and can be accomplished as shown below:

OPEN X$ FOR INPUT AS #1
CurLine = 1
WHILE NOT EOF(l)

LINE INPUT Array$(CurLine)
CurLine = CurLine + 2

WEND
CLOSE #1

'open the file
'set the current line counter
'read until the end
'get a line
'skip over the next line

'close the file

If you do pre-load the array with individual lines of text, an extra
blank space should be present at the end of each line. When QEdit
wraps words to the next or previous line, the space is needed to
prevent the end of one word from running into the beginning of
another. Comments in the QEdit source code show how to insure
that every line has at least one trailing space.

Like most of the other QuickPak Professional routines, the current
cursor location indicates where to position the upper left corner of
the editing window. Parameters passed to QEdit are then used to
indicate the width and height of the window, the margins, colors,
and so forth. Let's take a close look at each of these in turn,
beginning with the QEdit calling syntax.

CALL QEdit (Text$(), Ky$, Action%, Ed)

The Text$O array holds the text to be edited, as described above.

Ky$ returns holding the last key that had been pressed. For
example, it would hold CHR$(27) if the user pressed Escape to exit
QEdit.

The Action% parameter sets the operating mode for QEdit as
follows:

1-58 Crescent Software, Inc.

QuickPak Professional Chapter 1

Action = 0-Use the editor in a non-polled mode. QEdit will take
control, and return only when the user presses the Escape key.
The underlying screen will be saved upon entry, and restored
when QEdit is exited.

If you do not intend to add features to QEdit or take advantage
of its multi-tasking capability, you may set Action% to O and
simply ignore the remaining Action parameters described below.

Action = I-Initialize the editor for polled mode. The underlying
screen is saved, the edit window will be drawn, and the text is
displayed. Control will be returned to the caller immediately
without QEdit checking the keyboard. The Action flag is also set
to 3 automatically (see below).

Action = 2-Redisplay the edit window and text, but without
resaving the underlying screen. Control is then returned to the
caller immediately without QEdit checking the keyboard. As
above, the Action parameter will be set to 3 automatically.

Calling QEdit with an Action of 2 would be useful when
changing the window size or location, to force QEdit to
redisplay the text at the new location.

Note that if word wrap is on, Actions 0, 1, and 2 will cause the
text to be re-wrapped to the value of Ed.Wrap
(see below).

Action = 3-This is the idle state of the editor. Each time the
editor is called with this value, it will check the keyboard and
perform tasks dictated by a key press. Control will then be
returned to the caller.

While the editor is being polled, the caller may examine the Ky$
parameter to determine which, if any, keys were pressed. The
members of the "Ed" structure can also be examined and
changed. Note that if the caller does change these, the editor
should always be called again with an Action of 2 to redisplay
the edit window.

Action = 5-Restores the screen that was saved when QEdit was
called with Action% set to 1.

Crescent Software, Inc. 1-59

Chapter 1 QuickPak Professional

The Ed parameter is a TYPE structure defined as Editlnfo in the
file QEDITYPE.BI. All of the additional parameters for QEdit are
contained in this structure. Therefore, you must include
QEDITYPE.BI in your calling program, and assign the elements
needed to establish the window size, colors, and so forth. This is
fully detailed in the DEMOEDIT.BAS demonstration program.

Note that passing a pointer to a TYPE variable this way is much
faster and more concise than passing all of these parameters as part of
the call. The following is a list of the elements in the Editlnfo
structure.

Ed.Rows sets the number of rows to be displayed in the window. It
can range up to 25 lines with no border on a CGA or
monochrome display, or 23 if you do specify a border. If an
EGA or VGA adapter is present and WIDTH is used to set more
screen lines before QEdit is called, then the window may
occupy up to 43 or 50 lines respectively.

Ed.Wide sets the number of columns to be displayed in the
window. The width can range up to 80 if no border is specified,
or 78 if a border is used.

Ed.Wrap sets the right margin for word wrapping. This is
independent of the rightmost visible column, and may be set to
nearly any value (up to 255). If the right margin extends beyond
the right edge of the window, QEdit will scroll the text to
accommodate it. Word wrap may also be disabled entirely by
setting Ed.Wrap to 0.

Ed.HTab sets the number of columns to move when the Tab or
Shift-Tab key is pressed. This parameter will default to 8 if a
value of zero is given.

Ed.AColor sets the color of the edit window. The color number
follows the same convention as the QuickPak video routines in
that both the foreground and background colors are packed into
a single value.

Ed.Frame is used to specify whether or not a frame is drawn
around the edit window. If it is set to any non-zero value, the
ruler line, scroll bars and cursor position numbers will be drawn
around the window.

1-60 Crescent Software, Inc.

QuickPak Professional Chapter 1

The remainder of the parameters are intended to be read by your
program, and do not have to be set before QEdit is called. For
example, you could determine if the user has resized the screen, or
if a block of text has been marked. Also, if you are adding some
sort of search capability for the text, you could force QEdit to
display the screen at a particular row and column.

Ed.LSCol holds the current left screen column of the editable
window (not including the frame).

Ed.LC holds the leftmost column of text being displayed, which
will be greater than 1 if text is scrolled to the right.

Ed.CurCol holds the current text column number of the cursor,
which is not necessarily the current screen column.

Ed. TS Row holds the top screen row of the editable window, not
including the frame.

Ed.TL holds the topmost row of the displayed text, which will be
greater than 1 if text has been scrolled down.

Ed.CurLine holds the current text line number at the cursor, which
is not necessarily the current screen row.

Ed. UICRow holds the upper left row number of the most recently
marked text block.

Ed.UlCCol holds the upper left column number of the most
recently marked text block.

Ed.BrCRow holds the bottom right row number of the most
recently marked text block.

Ed.BrCCol holds the bottom right column number of the most
recently marked text block.

Ed.CBlock indicates the type of marking for the most recently
marked block. Ed.CBlock will be O if marking was in sentence
mode, or -1 if the block was marked using the QEdit column
marking feature.

Crescent Software, Inc. 1-61

I

Chapter 1 QuickPak Professional

Ed.Presses indicates whether a mouse button has been pressed, but
not handled by the editor. This information is for your program
to use if you intend to handle mouse presses that occurred
outside of QEdit. Since Ed.Presses is non-zero only in that
situation, you would then examine the Ed.MRow and Ed.MCol
parameters (see below) to know where the mouse cursor was
when the button was last pressed.

Ed.MRow holds the row where the mouse cursor was at the time
the button was last pressed, or if it is currently being pressed.

Ed.MCol holds the column where the mouse cursor was at the time
the button was last pressed, or if it is currently being pressed.

Ed.Instat is used to determine the current insert state mode.
Ed.Instat will be 1 if QEdit is currently in the overtype mode, or
-1 if inserting is active.

Ed.Changed can be used to see if the text has been changed. This
parameter will be set to -1 if any changes or additions have been
made to the text, otherwise it will be 0. This lets you know
whether the file needs to be saved or not, however you must
clear this variable once the text has been saved.

Ed.LCount holds the number of active lines in the text string array.

Ed.MErr is an error flag used to signal errors that occurred within
the editor. Ed.MErr will be 1 if there is insufficient memory.
This could be caused by running out of string space with a large
document, or not having enough far memory to capture a large
block the user has marked for pasting. Ed.MErr will be set to 2
if the user attempted to enter (or paste) more text lines than the
string array has been dimensioned to.

Spread - The QuickPak Professional Spreadsheet

The QuickPak Professional spreadsheet is a full-featured application
lacking only user-defined formulas and macro capability. Not unlike
the various spreadsheet compilers on the market, the formulas and
cell formatting information are hard-coded into the program.

Where a traditional spreadsheet must interpret the contents of each
cell each time it recalculates, this approach allows the program to
operate very quickly. However, it also means that the spreadsheet
must be modified for each application.

1-62 Crescent Software, Inc.

QuickPak Professional Chapter 1

We have provided many of the features needed by a spreadsheet
program such as cell formatting and GOTO, however it is up to you
to establish the table of cell formats and formulas. We have also
provided an example showing how to implement an "intelligent"
recalculation, where only those cells that are affected by an edit will
be processed.

Because the QuickPak Professional spreadsheet offers much more
than simply a means to input data in rows and columns, there are a
number of steps that must be performed before it is called. These
steps are outlined below, followed by a brief description of some of
the programs internal workings.

To truly understand how this spreadsheet works, however, will
require a close examination of the BASIC source code. We have
commented the subprogram as thoroughly as possible, to explain the
purpose of each statement.

The first step you must perform is to dimension three arrays that
tell the spreadsheet how many rows and columns to use, how the
numeric cells are to be fo_rmatted, and how wide each column is to
be. In the description that follows, we will be referring to the demo
program DEMOSS.BAS, and we will use the same variable and
array names.

The main spreadsheet is contained in a two-dimensional string array,
which must be a conventional (not fixed-length) array. The size to
which Wks$0 is dimensioned determines the number of rows and
columns that can be accessed. The example below establishes the size
of the work area to be 150 rows from top to bottom, and 30 columns
wide:

DIM Wks$(150, 30)

A parallel string array must also be dimensioned, to hold the
formatting information that describes how numeric fields will be
displayed. The format strings are intended to be set up in the same
manner that BASIC's PRINT USING uses. If numeric formatting is
not required, then the array must still be dimensioned, though it is
not necessary to assign any of the elements.

Crescent Software, Inc. 1-63

Chapter 1 QuickPak Professional

The final array that is needed indicates the width of each column.
Unlike the two-dimensional worksheet and format string arrays, the
columns are kept in a one-dimensional integer array. The Columns
array must be dimensioned to the number of columns in the main
spreadsheet array, and each element establishes the width of its
corresponding column. That is, Co1Wdths%(1) sets the width for
the "A" column, Co1Wdths%(2) holds the "B" column, and so
forth.

Besides the arrays, three additional parameters are required by the
spreadsheet. The first one (WindW dth in the demo) indicates how
wide the active window is to be. This may range up to a value of
78, because the border requires two columns. The second parameter
is the number of rows to display, and the allowable upper range
depends on the number of screen lines that a given monitor can
display.

The final parameter is an action flag, which allows you to call the
spreadsheet more than once, without having to re-display the
screen. Action is used here as it is with QEdit, in that a value of
zero means to enter the program and wait there until the slash key is
pressed. At that time, it will restore the original screen and return
to the caller.

When Action is set to 1, the screen is saved as with Action 0, but
pressing the slash key does not restore the original screen. Thus,
your main program could display a menu to change the column
widths or load a new worksheet, and it would appear to the user
that they are still within the spreadsheet. You would then re-enter
the spreadsheet with an Action of 2, which simply re-displays the
screen. Notice that the column widths may be freely changed, and
the spreadsheet will be re-displayed correctly in the new size.

Finally, calling QEdit with an Action of 5 tells it to restore the
original screen contents and return.

Because the QuickPak Professional spreadsheet is supplied as
BASIC source code, there is virtually no limit as to how it may be
modified. The incoming keystrokes are read by the program
immediately below the remark "Main key processing loop". Thus,
you could put additional key traps there, and branch to other parts
of the subprogram that you create.

1-64 Crescent Software, Inc.

QuickPak Professional Chapter 1

Three function keys are recognized in the program-F2 to edit a
cell, FS to prompt for a GOTO address, and F9 which causes a
complete recalculation. Whenever a cell is edited, the program
branches to the label QPCellEdit. Approximately 25 lines below
that label is a GOSUB to the QPCalcl routine, which recalculates
only that portion of the work sheet that depends on the edited cell.
Of course, it is up to you to modify the calculations, and determine
which cells must be revised.

QuickPak Professional includes all of the scientific and financial
functions used by commercial spreadsheets, and these would be a
natural addition to applications you create with the QuickPak
Professional spreadsheet.

Crescent Software, Inc. 1-65

Chapter 1 QuickPak Professional

Spreadsheet Program Description

The spreadsheet subprogram begins by determining the type of
monitor that is installed, and then sets appropriate window,
highlight, and border colors. These are clearly marked to make it
easy for you to change them if you prefer.

Next, the Action variable is examined to see if the program is being
initialized or not. If so, the current cursor location and underlying
screen are saved, and the spreadsheet is displayed. Otherwise, the
original screen is restored, and the array that held it is erased to
free up the memory.

The next few steps calculate the total width of the display window,
and create the header title line. Finally, four GOSUB's are used to
print the header and cell contents, calculate the entire spreadsheet,
and highlight the current cell at Al.

We have used GOSUB rather than CALL for several reasons. First,
a GOSUB can branch and return considerably faster than can a
CALL. Second, GOSUB eliminates having to share many variables,
or worse, pass them all which would take even more time. (The
next time some clown tells you how much faster C is compared to
BASIC, point out that GOSUB is always faster than any C function,
because it avoids time-consuming pushes to pass parameters.)

All keystrokes are read in the main key processing loop, which is
clearly marked. Any custom keys that you would like to process
may be examined here. For example, if you intend to add macros
you could trap Alt keys and perhaps function keys as well.
Extended keys may also be examined in the SELECT CASE block
below, however normal non-extended keys must be trapped here.

Notice the string variable Status$, which holds a message such as
"READY" or "WAIT" to be printed in the upper right corner. You
may print custom messages in the status box, however the
maximum length is limited to five characters.

It is important to use LSET to assign Status$ as we have done, to
clear any remnants of a previous longer message. Using LSET also
maintains the original string length, which guarantees that the entire
message area is filled.

1-66 Crescent Software, Inc.

QuickPak Professional Chapter 1

One technique you may find interesting is how we trap the first key
that is entered, to know whether the status box is to display
"LABEL" or "VALUE". If the key is either a slash or one of the
extended keys, the program branches to the section meant to handle
it. However, any other key will be examined to see if it matches
against a table of value keys, and Status$ is modified and displayed.

Of course, we can't simply discard that key, so it is then stuffed
back into the keyboard buff er, prior to calling the Editor routine.
Thus, Editor also gets a chance to process the key.

The next long block of code examines and processes all of the
extended keys that are recognized by the program. Each key is
clearly labeled within the CASE statement, again to make it easier
for you to add additional processing if desired.

The final portion of the subprogram contains the routines that do
most of the real work. Separate subroutines are used to highlight the
current cell, create the "Al" cell address marker, and print the
column header, a cell's contents, or the entire worksheet.

The next two subroutines create a line of data for display, and
process a cell after it has been edited. Even though a
two-dimensional string array is used to hold the worksheet, each
line is created separately which allows it to be quickly displayed.

The last two subroutines are used to calculate the worksheet, and
these must of course be customized by you. The first subroutine is
entered whenever the F9 Cale key is pressed, and it must contain
statements to recalculate the entire worksheet. The second is
invoked whenever a cell has been edited, and may be set up to
recalculate only those cells that depend on the one that was edited.

Crescent Software, Inc. 1-67

Chapter 1 QuickPak Professional

QUICKPAK PROFESSIONAL FUNCTIONS

We have provided a number of useful scientific and financial
functions that are intended to be added to your programs. Nearly all
of the scientific and financial functions that are present in the
popular spreadsheet programs are included, along with many
general purpose functions.

All of the functions that are equivalent to those found in most
spreadsheet programs have names that begin with the letters QP,
and are contained in a file named FNSPREAD.BAS. This is done
both to identify them, and to allow you to use meaningful names for
your variables. For example, the QuickPak Professional Future
Value function is called QPFV#, which allows you to also have a
variable named FV #.

All of the scientific and financial functions are set up to accept and
return double precision values. If you prefer, they may easily be
changed to use single precision variables. Simply modify the function
header and parameter list as shown in the example below. Of course,
you must also change all references to those variables in the function
definition.

FUNCTION QPATAN2#(X#, Y#)

becomes

FUNCTION QPATAN2!(X!, Y!)

Because these functions are small, they have all been placed into a
single file, along with a short demonstration. Therefore, we
recommend that you load FNSPREAD.BAS as a module, and then
move the ones you need to your main program. This eliminates
having to deal with many individual files.

To move a subprogram or function with the QuickBASIC 4 editor,
first press F2 which brings up a list of all of the modules that are
currently loaded. Simply move the cursor highlight bar to the
function or subprogram to be moved, and then press Alt-M. You
will be prompted for the destination module that is to receive the
subprogram or function.

1-68 Crescent Software, Inc.

QuickPak Professional Chapter 1

VERY IMPORTANT

If a function has been moved from one module to another, it is no
longer present in the source module in memory. When you
subsequently unload the original function file, QuickBASIC will
warn that the file has been modified, and ask if you want to save it.
Be sure to answer "No", otherwise the file will be saved, but
without the function that had been moved.

In only a few cases, one function will require the presence of
another. For example, the QPAVG# (average) function also calls
upon QPSUM# and QPCOUNT#. Those functions that require
another function are clearly marked at the beginning of their source
code as to what additional routines are needed.

All of the functions are identified in a header portion of
FNSPREAD.BAS, with the meaning of each expected variable
clearly identified. Functions that operate on arrays are set up to
access the entire array. If you need to process only a portion of an
array, the source code may be easily modified as follows.

The first few lines in each of the array functions obtain the lower and
upper bounds of the array like this:

FUNCTION QPSUM#(Array#())
Lo%= LBOUND(Array#, 1)
Hi%= UBOUND(Array#, 1)

FOR X% = Lo% TO Hi%

Simply change the incoming parameter list to also include the Lo%
and Hi% parameters:

FUNCTION QPSUM#(Array#(), Lo%, Hi%)

Next, remove the lines that assign Lo% and Hi%. Then when the
function is used, also pass the desired range of elements to be
included.

The remaining functions are contained in the file FNOTHER.BAS
and are also intended to be moved to your programs. Among the
many routines provided are functions for parsing strings, replacing
and inserting Tab characters, and converting between signed and
unsigned numbers. Each is fully described in the Functions portion
of this manual.

Crescent Software, Inc. 1-69

I

Chapter 1 QuickPak Professional

Adding these functions to QuickBASIC 2, or 3 is also fairly easy.
With QuickBASIC 2 or 3, first load the appropriate function file,
and mark the functions of interest with the Shift-arrow keys. Then
press F2 to capture the text into the editor's paste buffer. Finally,
load your main program, put the cursor at the point where the
function is to be inserted, and press the Insert key. This will paste
the text into your program.

It is important to understand that functions in QuickBASIC 2 and 3
must be defined before they are used. That is, they must be
physically positioned in the BASIC source code before any lines
that refer to them.

1-70 Crescent Software, Inc.

QuickPak Professional Chapter 1

VERY LONG INTEGERS

The recent addition of long integers to BASIC is welcome indeed.
Where many repeated calculations with conventional floating point
variables often produce small cumulative errors, long integers are
always accurate to the penny. Further, long integer operations are
considerably faster than the same operations on double precision
variables.

Unfortunately long integers don't always provide a sufficient range
of values. Considered as pennies, a long integer can hold numbers
ranging between plus and minus 21 million dollars or so. That's
better than the range of conventional integers, but clearly
inadequate for serious financial work.

Therefore, we have provided a set of six subroutines to manipulate
what we call Very Long integers. A Very Long integer is comprised
of eight bytes (64 bits), and it can hold any number between
-9,223,372,036,854,775,808 and +9,223,372,036,854,775,807.
Now, that's a range of numbers-just like a mainframe!

All of the standard four-function math operations are included to
add, subtract, multiply and divide Very Long integers. Of course,
you'll also need some way to print and assign them. Therefore, a
pair of routines to convert between the Very Long format and a
conventional string are also provided.

Because Very Long integers occupy eight bytes, a natural parallel
exists between them and conventional double precision variables.
Therefore, you will use those to hold the values manipulated by the
Very Long integer routines.

A Very Long integer may be included in a field statement for use
with disk files, however it is important to understand that you must
always pack and unpack the variable whenever it is to be assigned
or printed. The example below shows a Very Long being assigned
from a string, and written to a disk file:

CALL VLPack("l234567890123", VL#, ErrFlag%)
OPEN "TEST.DAT" FOR RANDOM AS #1 LEN= 65

FIELD #1, 8 AS VL$, 57 AS Stuff$
LSET VL$ = MKD$(VL#)
LSET Stuff$ = "This is a silly test message"
PUT #1, 1

CLOSE #1

Crescent Software, Inc. 1-71

Chapter 1 QuickPak Professional

The next example shows how all of the records in a data file may be
read, and a cumulative total obtained for each Very Long field:

or

OPEN "TEST.DAT" FOR RANDOM AS #1 LEN= 65
FIELD #1, 8 AS VL$, 57 AS Stuff$
Records%= LOF(l) / 65 'find number of records

'and zero out the total
'accumulator

CALL VLPack#("O", Total#,
FOR X% = 1 TO Records%

GET #1, X%
CALL VLAdd(Total#,

NEXT
CLOSE #1

Tot$= SPACE$(2O)

ErrFlag%)
'process entire file
'read a record

CVD(VL$),Total#,ErrFlag%)
'accumulate total

'we MUST make room for the
'returned string

CALL VLUnpack(Total#, Tot$, ErrFlag%)
Tot$= LTRIM$(Tot$) 'optional to strip leading

'spaces in the string PR INT "The total is "; Tot$

PRINT USING"#############,.##"; VAL(Tot$)

The example above accumulates a running total, but to save an extra
scratch variable Total# is used twice in the calling argument list.
That is, Total# is one of the operands being added, as well as the
variable that receives the result.

Normally passing the same variable twice like this would be
considered a bad programming practice. However, all of the Very
Long subroutines have been designed to work correctly when
variables are passed in this manner.

The ErrFlag% variable is handled somewhat differently by the
various Very Long routines. If a string to be packed contains
letters, punctuation, or any other extraneous characters, VLPack
will set ErrFlag% to -1 to indicate the error. Otherwise, ErrFlag%
will return holding zero.

However, the only error that could occur with VLUnpack is failing
to give it a string long enough to hold the returned information. As
with VLPack, ErrFlag% receives a zero if no error occurred, or a
-1 if the string length was insufficient.

The four VL math routines set ErrFlag% only if the result of any
adding, multiplying, and so forth result in a value that is either too
high or too low.

1-72 Crescent Software, Inc.

QuickPak Professional Chapter 1

SORTS VS. INDEXED SORTS

Many different types of sorts are provided in the QuickPak
Professional package, however all of the sorts fall into one of two
categories. The "plain" sorts are intended to order all of the
elements in an array to be either ascending or descending.
However, we have also provided a set of indexed sorts that instead
sort a table of pointers. Let's take a closer look at what this means.

When one of the normal sorts is called to sort an array (or a portion
of an array), the elements are actually exchanged to fall into the
desired order. If you print all of the elements in sequence after the
array has been sorted, you can easily see how they have been
arranged:

CALL Sortl(SEG Array%(Start), Size%, Direction%)
FOR X = Start TO Size%

PRINT Array%(X)
NEXT

The indexed sorts, on the other hand, sort a parallel integer array
rather than the primary array, thus retaining the original order while
also providing access in sorted order. The example below shows the
same array being sorted as above, except the elements are printed out
by referring to the index array subscripts.

CALL ISortI(SEG A%(Start), SEG 1%(0), Size%, Direction%)
FOR X = Start TO Size%

PRINT A%(I%(X))
NEXT

It is important to understand that you must dimension the parallel
index array to the correct number of elements. Further, it is also up
to you to initialize the index array to increasing values beginning
with zero. The indexed sorts require a reference point to be able to
access each element in the primary array being considered. This
means that when the sorting begins, index element zero must
contain a 0, element one will hold a 1, and so forth.

Crescent Software, Inc. 1-73

Chapter 1 QuickPak Professional

Even though it would be simple for the sorting routine to initialize the
index array itself, this would disallow resorting a second time based
on another key. Therefore, we have provided the routine Initlnt which
is specifically intended to initialize an integer array to ascending
values very quickly. The example below shows how Initlnt would be
used in the typical context of sorting an entire array:

DIM A%(1000), 1%(1000)
CALL Initlnt(SEG 1%(1), 1, 1000)
CALL ISortI(SEG A%(0), SEG 1%(0),
FOR X = 0 TO 1000

PRINT A%(I%(X))
NEXT

'dim the arrays
'initialize the index
1001, 0)

One other point that you should be aware of is reserving sufficient
stack space when sorting very large arrays. The Quick Sort
algorithm used by the various sort routines uses the PC's stack as it
is working. Unfortunately, it is not always clear exactly how much
stack memory will be required.

We recommend that you set aside one byte of stack space for each
five elements being sorted. In the example above, 1000 elements
are being sorted, so at least 200 bytes of stack space will be needed.

Unless you instruct BASIC otherwise, it will always set aside at least
1,000 bytes of memory for a stack. So in this case, no extra effort is
needed on your part. But when the number of elements exceeds, say,
one or two thousand, you should use the CLEAR command as shown
below to establish additional stack memory:

CLEAR ,, stacksize

If you are using BASIC PDS, the STACK statement provides the
same service, but without the side effects of CLEAR.

Remember that besides the sort routines, other resources in a PC
may also need the stack at the same time. For safety, we
recommend setting aside one byte per five elements plus an extra
512 bytes just in case. By now you may be thinking, "Okay, but
what will happen if I don't provide enough stack memory?" Good
question.

1-74 Crescent Software, Inc.

QuickPak Professional Chapter 1

In a BASIC program, the stack resides near the bottom of the 64K
string data segment. As new items are added to it, they are placed
at ever lower addresses, and an internal counter in the PC's
microprocessor tracks where the next available stack location is. If
too many items are added to the stack, they will extend into and
overwrite your variables and other data, which will cause all sorts
of problems.

Even though BASIC provides the FRE(-2) function to determine
how much stack space is available at any given time, PRE is not
able to monitor the stack while the sort routines are working.

BASIC also uses the stack for its own purposes-retaining the
address to return to after a GOSUB or CALL, and to store the
addresses of variables being passed to a subprogram. For example,
every time a GOSUB is performed, two bytes are used, while a
CALL to a BASIC subprogram with no parameters requires ten
bytes.

Each simple variable passed in a parameter list uses an additional
two bytes, and each one-dimensional array adds ten more. On top
of that, another two bytes per dimension are taken when using
multi-dimensioned arrays.

Using this as a guideline, you can determine fairly easily the
amount of stack memory required by your programs, based on the
number of parameters being passed, as well as the depth of
subprogram nesting.

One final point worth mentioning concerns the QuickPak
Professional assembler sorts. We have provided a number of
different sort routines, each optimized for a particular type of
variable. That is, separate sorts are included for integer arrays, long
integers, single precision, double precision, normal strings, and
fixed-length or TYPE arrays.

If you intend to sort, say, only long integers, then that routine will
provide the highest performance possible. However, if you need to
sort several different types of arrays in one program, you might
consider using only the TYPE sort routine. (Or the indexed TYPE
sort where applicable.)

Crescent Software, Inc. 1-75

Chapter 1 QuickPak Professional

The TYPE sort can be used to sort all of the other variable types,
except conventional string arrays. Even though the speed will be
slightly lower than with the sorts that are optimized for a single
variable type, your programs will be that much smaller.

1-76 Crescent Software, Inc.

QuickPak Professional Chapter 1

DEFCNF AND SETCNF

DEFCNF .BI defines a TYPE variable that contains all of the
information about the host PC that most programs would need to
know. A complimentary program named SETCNF.BI then queries
the system and assigns each component defined in DEFCNF. For
example, the type of monitor installed, whether or not a mouse is
present, and so forth.

Two separate files are used because the system hardware really
needs to be examined only once. However, the TYPE variable that
is defined in DEFCNF will also be needed in any other modules
that are linked to the main program. This way, SETCNF will assess
the system and fill in all of the elements of the Config TYPE
variable. Then, the entire variable and all of its components may be
passed to any of the other modules in one operation-as long as they
also include DEFCNF to define the Config TYPE variable.

DEFCNF and SETCNF will thus be added near the beginning of your
main programs like this:

'$INCLUDE: 'DEFCNF. Bl'
'$INCLUDE: 'SETCNF.BI'

Then, any external modules that also need access to the configuration
will need to include only DEFCNF.BI:

'$INCLUDE: 'DEFCNF.BI'

To be consistent with the Microsoft way of doing things, the type of
monitor detected may be ignored and forced to mono by placing a
/B argument on the command line of any program that uses
SETCNF. If you do not want this feature, simply REM ark out that
statement in the SETCNF .BI Include file. Likewise, you could add
a "IC force color" command line option using a similar technique.

Crescent Software, Inc. 1-77

I

Chapter 1 QuickPak Professional

CREDITS

A number of people have made important contributions to QuickPak
Professional, and they all deserve credit for their programming
skills and hard work. Each is listed below in alphabetical order,
followed by the routines they have written.

John C. Bean: ReadFileX

David Cleary: The entire suite of XMS routines.

John Conrad: FCopy, FEof, FOpenAll, FOpenS, NameDir,
FStamp and WhichError

Bill Eppler: All of the spreadsheet functions except those
noted below

Ed Ernst: QPIRR and QPNPV spreadsheet functions

Robert Hummel: All of the assembler numeric and TYPE array
sorts, and the floating point Compare routines
used by the assembly language Max, Min, and
Search programs

Robert Karp: Clock and Keyboard

Chris May: AMenu, AMenuT, Box, DirFile, Editor, FUsing,
MenuVert, PUsing, YesNo. Chris also did all of
the research and coding to create the object
modules generated by MakeQlb.

Jay Munro: PSwap, AsciiPick, ColorPick, MouseRange,
QPStrl and QPStrL.

Jeff Prosise: Pause2 and the entire suite of EMS routines.

Thomas Renckly: DEMOEMS2.BAS

Don Resnick: Cale

Philip Martin
Valley: DEM0123.BAS

Harald Zoschke: Calendar

1-78 Crescent Software, Inc.

QuickPak Professional Chapter 1

Crescent partner Don Malin contributed many important programs
including MsgBox, PullDown, QEdit, Spread, VertMenu,
ViewFile, and the QD "QuickDOS" utility. Don also wrote
MakeQlb, Pick.List and VertMenuT.

Paul Passarelli is a member of the Crescent Software staff, and he
wrote ASCIIChart, C2F and F2C, Delimit, MouseTrap, Parse,
QPrintAny, Rand, and all of the Very Long integer routines. Paul
also wrote FileSort, Evaluate, QPVall and QPValL.

Phil Cramer, another member of the Crescent Software staff, wrote
the Dialog subprogram and demonstrations. Phil also wrote the
SCROLLIN. BAS subprogram.

Brian Giedt who wrote our GraphPak and GraphPak Professional
packages created the graphics mode ScrnDump subroutine.

Warren Bofinger designed and typeset the original version of this
manual, with later additions by Jacki W. Pagliaro.

All of the remaining subroutines, functions, and example programs
were created by Ethan Winer. This manual and the Assembly Tutor
were written by Ethan Winer.

Crescent Software, Inc. 1-79

I

I Chapter 1 QuickPak Professional

DIFFERENCES FROM PREVIOUS VERSIONS OF QUICKPAK

Besides the enormous number of new programs in QuickPak
Professional, we have also made important improvements to many
of the routines that are derived from the original QuickPak.

One of these is the addition of a Page parameter to the various
video routines. Where the original QuickPak video routines could
only deal with text page zero in standard eighty-column mode, the
video services in Professional can accommodate any number of
rows and columns, on any legal video page.

Many of the video routines now require a Page parameter to indicate
which text page is to be used. For example, the original version of
QPrint specified only the string to print and a color:

CALL QPrint(X$, Colr%)

The new version is instead called like this:

CALL QPrint(X$, Colr%, Page%)

If Page% is set to zero, then QPrint will write to text page zero,
regardless of which page is actually active. Likewise, setting Page%
to 2 will print on text page 2, even if page zero is currently being
displayed. This capability lets you build screens in the
"background", to be displayed at a later time by using BASIC's
SCREEN command.

Of course, multiple pages will work only with color display
adapters-for mono screens you should always use page zero.
Otherwise, the information will be written to an area of memory
that is not active. If a new monochrome standard that allows more
than one text page should ever emerge, though, the QuickPak
Professional video routines will be ready.

As a further enhancement, you may also print on whatever page
happens to be active at the time QPrint is called by using -1 as the
page parameter. In a similar fashion, the color parameter may also
be -1.

1-80 Crescent Software, Inc.

QuickPak Professional Chapter 1

In the original QuickPak we provided both QPrint and QPrint2.
Where QPrint expects you to tell it the color to use, QPrint2 would
always honor whatever colors were already on the screen. In the
new versions of QPrint (and APrint), the original colors may be
preserved by specifying a color value
of -1.

Because these new capabilities require a fair amount of additional
code to accomplish, we have also provided versions of most
routines that operate on page zero only. All of these alternate video
routines have a "O" appended to their name. For example,
ScrnSaveO will save portions of the screen on page zero only.
However, the "O" versions will operate correctly in either the
40-column or 43-line modes.

Another important difference relates to the QuickPak Professional
subprograms written in BASIC. When life was simpler and
SHARED always worked as expected, we used shared variables in
several of the input and menu programs. Unfortunately, SHARED
does not work across modules in a QB 4 program, so we have
modified those routines that had in the past used SHARED to now
pass all parameters.

If you are converting an existing program that uses QuickPak
routines for use with QuickPak Professional, please consult the
routine description portion of this manual for each of the QuickPak
services you are using. We have made every effort to maintain as
much compatibility with the original versions as possible, however
in some cases a change to the CALL parameters was unavoidable.

Also, several of the original QuickPak routines have been renamed.
This was done mostly to provide some consistency with the many
new routines that have been added. However, in a few instances
they were changed simply because we didn't like the originals. For
example, many people had trouble pronouncing BasDir, so it is now
named ReadFile.

Crescent Software, Inc. 1-81

I

Chapter 1 QuickPak Professional

Another change made to QuickPak Professional affects those routines
that manipulate arrays. In the good old days when most arrays started
with element zero, it seemed logical for us to assume element zero in
the size calculations. Therefore, routines such as Sort were designed
for you to tell it the number of elements to sort minus one. This
example is for the original QuickPak:

DIM Array$(10)
FOR X = 0 TO 10

REAO Array$(X)
NEXT
CALL Sort(Array$(0), 10)

'really 11 elements
'read some data

'sort 11 elements

Even though the Owner's Guide referred to the Size parameter as
the number of elements to sort, it actually had to be one less. But
now that QuickBASIC and Turbo Basic allow nearly any starting
and ending range of subscripts, we have changed the array routines
to expect the actual number of elements.

Two other important changes are the addition of assembler functions
for QuickBASIC 4, and the re-writing of several BASIC routines
into assembly language. Where the original QuickPak routine to get
the current default drive required passing it an integer variable, the
Professional version of GetDrive returns the result directly.

Likewise, GetDir now returns the current directory without having
to preassign and pass it a string. This allows GetDir to return only
as many characters as needed, and without the extra trailing zero
byte. We have also enhanced GetDir to add the leading backslash
automatically.

All of the assembler routines that logically should return a value are
now set up this way. Besides being more sensible, in all cases one
less parameter will need to be used when calling the routines.

In some cases where we have translated a BASIC routine into
assembly language, we are still providing the original BASIC
version. It is very difficult for most BASIC programmers to modify
someone else's assembler routine, and the BASIC versions allow
you to customize them if you really need to.

Both assembler and BASIC versions are provided for several of the
menu and input routines. Also, it is more difficult to implement the
scrolling bars and mouse capabilities in an assembler menu, so if
you need those features you must use the BASIC versions.

1-82 Crescent Software, Inc.

QuickPak Professional Chapter 1

Further, only the BASIC input routines show the status of the Cap
and NumLock keys automatically. Likewise, the BASIC Textln
subprogram recognizes the Ctrl-arrow keys to jump by whole
words, where its Editor assembler counterpart does not.

All of the original QuickPak routines that process arrays are now
also provided in a second version meant for use with fixed-length
string and TYPE arrays. In all cases these routines have the same
name as their original counterparts, but with the letter "T"
appended as a suffix. For example, APrint for use with fixed-length
strings is called APrintT.

The final improvements relate to the QuickPak routines that process
strings. Many of these are now provided in two versions-one that
honors capitalization and one that ignores it. Rather than build both
capabilities into all of the programs, we have opted to supply
separate versions. This allows each dedicated routine to be that
much smaller and faster, while eliminating yet another parameter to
be passed.

All of the string services that are provided in two forms use a 2
appended to the name to indicate case-insensitive. That is, SortStr
will sort a string array and honor the difference between "A" and
"a", while SortStr2 considers "a" to come before "B". Likewise,
InCount2 will find "Hi Mom" within the string "HI MOM" or "hI
mOM", while InCount would not.

Crescent Software, Inc. 1-83

I

I Chapter 1 QuickPak Professional

DIFFERENCES FROM EARLIER VERSIONS OF QUICKP AK
PROFESSIONAL

This version of QuickPak Professional improves on the original
1.XX version in two important ways. The first is simply the
addition of more routines. The second improvement is in all of the
DOS and video routines, as well as in some of the BASIC
subprograms. Also, several of Chris May's assembler routines use a
new calling convention that lets you know which key was used to
exit the routine. Please see DEMOCM.BAS for additional
information.

New routines fall into one of two categories-those present in some
earlier versions but not mentioned in the manual, and routines that
were not present at all. If you are already using any of the routines
that have been changed, be sure to see the appropriate pages in this
manual for the correct usage.

All of the DOS routines have been rewritten to eliminate the need
for an extra variable solely to indicate if an error occurred. The
new method uses a pair of assembler functions to tell if an error
occurred on a prior DOS access. This is described in detail in the
section "Eliminating ON ERROR".

All of the video routines have been rewritten to use the Monitor
function to determine the current monitor type. Where the original
versions duplicated the same code over and over, the new versions
utilize a common routine to do this. Notice that this change is
transparent to your programs, and does not require any
modifications to the code.

A new method for storing a string array in an integer array (the
string manager routines) has been implemented. Where the original
version stored the length of each string immediately before the
string data, the new method uses a carriage return/line feed pair to
delimit the strings. This approach lets you directly write the array to
disk quickly, while storing it in a conventional ASCII text file
format. The new FGetA and FPutA routines are provided for this
purpose.

Finally, several of the BASIC routines have been enhanced. In most
cases, no change is needed in the way they are called, however in
the QEdit text editor, a new TYPE variable has been added to the
parameter list.

1-84 Crescent Software, Inc.

QuickPak Professional Chapter 1

TUTORIALS

COMPARING CALL, GOSUB, AND MULTI-LINE FUNCTIONS

With all the features and capabilities in the latest wave of BASIC
compilers, we are often asked to explain the difference between a
called subprogram, a GOSUBed routine, and a multi-line
user-defined function. In many cases it really doesn't matter which
you use, however some situations definitely favor one approach
over the others. For example, using separately compiled
subprograms is the only way to create a final program with more
than 64K of code with QuickBASIC.

Essentially, a called subprogram would be used when you want to
do something, or need to alter a variable. On the other hand, a
function would be indicated when a value is to be computed based
on the contents of one or more variables. DEF FN type functions
have the added characteristic that they cannot alter any of the
incoming variables. Finally, GOSUB routines are useful when a
large number of variables must be shared with the main program.
Let's take a closer look at each of these methods in turn.

SUBPROGRAMS

When a subprogram is called, the addresses of all the variables
included in the parameter list are made available to the subprogram.
Whenever one of these variables is assigned in the subprogram, the
changes will also be reflected in the main program because the
variable was actually altered. Further, any of the variables used in a
subprogram that were not passed in the list are considered to be
"private". That is, you can have a variable named Price within the
subprogram, and it will not conflict with a variable of the same
name outside the subprogram.

Crescent Software, Inc. 1-85

I

Chapter 1 QuickPak Professional

Of course, you can also share variables between a main program
and its subprograms with the SHARED statement. There are two
ways to do this. One approach is to declare the variables as being
shared within the subprogram. The only problem with this method
is that in QuickBASIC, a bug causes the SHARED statement to be
ignored once a program grows beyond a certain size. I have
observed this with QB versions through 3.0, so it isn't
recommended. Also, variables that are declared as shared within a
subprogram will be shared only with the main program, and not
with any other subprograms.

The other method is to use DIM SHARED, which will establish one
or more variables as being shared throughout an entire program.
Even though DIM is usually meant for declaring the size of an
array, you can also use it to indicate which variables are to be
global. Here's one example:

DIM SHARED Max, Position, Array${250)

Notice that DIM SHARED is not supported by Turbo Basic as of
version 1.1, so you must place separate SHARED statements within
each subprogram.

FUNCTIONS

Functions are useful in a variety of programming situations, and
differ from subprograms in that they are not invoked by the BASIC
CALL command. Rather, you simply refer to a function by its name
as part of an expression. If you defined a function to return the
square of a number, it might be written like this:

DEF FnSquare{X) = X * X

Then to square a number, you would simply include the function as
part of an assignment, or perhaps use it in a PRINT statement:

Value= FnSquare(2.3)

or

PRINT FnSquare(A)

1-86 Crescent Software, Inc.

QuickPak Professional Chapter 1

Functions also have the unique ability to return a numeric result based
on a string, or vice versa. For example, BASIC's built-in STR$0
function will accept a numeric value, and convert it into the
equivalent string form.

X$ = STR$(Value#)

Similarly, the VAL function accepts an incoming string, but returns
its numeric value:

Number%= VAL("43562.89")

Since a function can't actually change any of the variables being
passed to it, it would be less appropriate for, say, modifying a
variable in some way. Of course, BASIC lets you do just about
anything you'd ever want; however, using a function that way would
require extra program instructions. For example to convert a string to
all upper case with the UCASE$ function available in Turbo Basic
and QuickBASIC 4.0 you would have to assign a new variable:

CustName$ = UCASE$(CustName$)

As opposed to calling a subprogram that capitalized the string directly:

CALL Upper(CustName$)

SUB Upper(X$) STATIC
FOR X = 1 TO LEN(X$)

NEXT
END SUB

Char= ASC(MID$(X$, X))
IF Char> 96 AND Char< 123 THEN

MID$(X$, X) = CHR$(Char - 32)
END IF

If you wanted to use a capitalized version of a string, though, without
actually changing it permanently, then a function is ideal.

IF UCASE$(Answer$) = "YES" THEN ...

or

PRINT UCASE$(CustName$)

Crescent Software, Inc. 1-87

Chapter 1 QuickPak Professional

This way, the string isn't actually altered, but your program can use
it as if it were. Because of this behavior, functions are not often
used to modify or print variables, or to perform file access, though
of course they could be.

Functions are also ideal for providing a single result based on a
number of input variables. Many of BASIC's built-in functions work
like this as well, for example INSTR accepts two different string
arguments, and returns one numeric result. Another place a function
might be useful is when you need to find the maximum or minimum
of two or more values:

DEF FnMax(X, Y)
IF X > Y THEN

FnMax = X
ELSE

FnMax = Y
END IF

END DEF

Then to print whichever variable is greater, simply include the
function within a PRINT statement.

PRINT FnMax(Valuel, Value2)

Unlike subprograms where the incoming variables may be freely
changed, BASIC instead makes a temporary copy of any parameters
being passed to a function. Then, the addresses of these copies are
made available to the function, rather than the addresses of the
original variables. Thus, any variable assignments within a function
will be in effect only while the function operates, since only the
copies are being manipulated.

In the function below, even though the incoming variable Z is being
modified, the assignment will not be reflected in the main program
once the function has finished.

DEF FnSigned(Z)
IF Z > 32767 THEN Z = Z - 65536
FnSigned = Z

END DEF

Another important point is that unlike subprograms, variables that
are not part of the function's incoming parameter list will be
common to the rest of the program. Of course, functions can also
utilize local variables, but they must first be declared STATIC.

1-88 Crescent Software, Inc.

QuickPak Professional Chapter 1

Which brings up an important point. Even though STATIC is
generally used to declare a variable as being private to a function or
subprogram, its real purpose is to permanently allocate storage
space while a program is being compiled. Normally, a programmer
uses a high-level language to avoid having to deal with the messy
details of memory allocation, DOS functions, and so forth. In this
case, however, it is important to understand how variables are
stored.

When a variable has been declared as STA TIC, an area of memory
is set aside to hold it at the time the program is compiled. This is
exactly the same way that regular variables are handled in a main
program. But with the introduction of QuickBASIC 4.0 and its
support for recursive functions and subprograms, you may now
stipulate that variable space is to be created when the program is
run. In this case, temporary space is set aside on the processor's
stack to hold the variable's value.

In a recursive subprogram, any variable that is not declared as static
will be created and initialized to zero (or a null string) each time the
subprogram is invoked. But in some situations you might want to
retain the value of certain variables between successive calls. This
is precisely what the ST A TIC statement is for-it creates a
permanent memory location in normal RAM for those variables.
Otherwise, the variables exist only while the subprogram is
running, and the stack memory that holds them is abandoned when
the subprogram ends.

This is an important distinction, because recursive functions must
preserve all of their local variables if they are to be repeatedly
invoked. If a recursive function or subprogram is midway through a
series of calculations and then calls itself, the second invocation
must not destroy or overwrite any variables from the level above.
This is why new memory areas must be found to hold the non-static
variables at the time the function is used, rather than once at the
time the program is compiled.

Crescent Software, Inc. 1-89

I

Chapter 1 QuickPak Professional

GOSUB

In most cases, a GOSUB routine is not as useful as a called
subprogram, since the names of each variable being manipulated must
be whatever the subroutine is expecting. In the old days, the only way
you could have a subroutine do the same thing to many different
variables was to constantly assign and reassign:

Temp$= CustName$: G0SUB 1200 : CustName$ = Temp$

One exception, though, is when a large number of variables must be
shared between the main program and the subroutine. When I first
began writing a word processor I've been tinkering with for about a
year, I started to write the margin-setting routine as a subprogram.

But then I was faced with either passing all of the margins and other
assorted default values as parameters, or else declaring the twenty
or so variables as being SHARED. It finally hit me that a plain old
GOSUB made the most sense-the routine could access all of the
variables it needed, and I didn't have to pass or share any of them.

Yet another advantage of GOSUB is due precisely to the fact that it
is not kept separate from the rest of the program. One of
QuickBASIC's many restrictions in its error handling is that errors
that occur in a subprogram must always be handled in the main
program. If the routines that perform disk reading and writing are
all in the main program to begin with, you'll have less difficulty
resuming a program's execution where you want to.

Finally, a GOSUB can be executed much more quickly than a
CALL can. Each time a CALL is used in a BASIC program, the
address of each passed parameter must be placed on the PC's stack.
When an entire array is passed, many bytes will be involved which
takes even more time. (See the section about sorting elsewhere in
this manual for an additional discussion of how the stack is used by
BASIC.) Stack operations are notoriously slow on the 8088 series of
processors, and are avoided by assembly language programmers
whenever possible.

1-90 Crescent Software, Inc.

QuickPak Professional Chapter 1

FUNCTIONS IN QUICKBASIC 4.0

QuickBASIC 4.0 introduces yet another type of function, which
Microsoft refers to as a Function Procedure. This type of function
is really just a variant of the subprogram, though it does return a
value as part of an expression. Like subprograms, variables that are
not declared STATIC in a Function Procedure will be local to the
procedure. Also like subprograms, any of the incoming variables
may be freely altered by the function. Further, this type of function
does not need to be physically positioned before the lines that
invoke it in a program, as required by the original DEF FN
functions.

It is also possible to call a Function Procedure (or subprogram) in
such a way that the incoming variables may not be altered if you
prefer. This is done by enclosing the variable's name in parentheses,
which QuickBASIC will then treat as an expression. Even though this
may seem a little odd, it makes perfect sense once you think about it.
For example, if you have a subprogram that expects an incoming
numeric variable, you could also call it with a numeric expression like
this:

CALL DoSomething(X * 5)

In this case, it would not be appropriate for BASIC to pass the
address of the variable X, since what you really want is to send it
the result of multiplying X by five. Therefore, QuickBASIC first
performs the calculation, then stores the result in a temporary
location, and finally sends the address of the temporary location to
the subprogram.

In a similar manner, you can trick QuickBASIC into thinking a
variable is really an expression by enclosing it in parentheses:

CALL DoSomething((X))

Microsoft's otherwise excellent BASIC documentation mistakenly
describes this technique as "passing by value," claiming that the
value of the variable is being passed rather than its address. In
truth, a temporary copy of the variable is created, and the address
of the copy is then passed to the function. Thus, any changes made
to the incoming variable will affect only the copy, and the original
variable's value will be preserved.

Crescent Software, Inc. 1-91

I Chapter 1 QuickPak Professional

SUMMING UP

We have looked at a variety of different ways that blocks of BASIC
code can be organized. Even though functions now have the
capability to extend across multiple lines and do operations like
printing and file 1/0, they are more often used to perform
calculations based on variables or values.

And while subprograms can be used to do nearly anything you'd
like, they are better suited to manipulating variables, or performing
specific actions. Finally, GOSUB routines provide a simple way to
share many variables with the main program, as well as simplifying
error and event trapping.

1-92 Crescent Software, Inc.

QuickPak Professional Chapter 1

DYNAMIC VS. STATIC ARRAYS

When QuickBASIC was first introduced, one of the most important
new features offered was the addition of Dynamic arrays. Where
earlier versions of the BASCOM compiler supported only Static
arrays that impinged on string space, Dynamic arrays finally
allowed the programmer to exceed the 64K limit on total data size.

When an array is dimensioned as static using a statement like:

DIM Array(lOOO)

the area of memory that will hold the array is permanently set aside
when the program is compiled. This area of memory is located
within the same 64K memory block that also contains strings,
simple (non-array) variables, and any DATA items. Further,
QuickBASIC also uses this memory for its own work variables such
as the current color settings, cursor location, and the most recent
DEF SEG statement.

However, an array may be dimensioned as Dynamic, which causes
the memory to be allocated when the program runs, outside of the
normal 64K data segment. There are several ways to tell
QuickBASIC that an array is to be Dynamic. One is to use a
variable or expression to specify the number of elements. Since the
variable's value isn't known when the program is compiled, the
memory must be set aside later when it is run.

Another way to force QuickBASIC to create an array as Dynamic is
to use REDIM instead of DIM, which brings up an important point.
Since the memory for a Static array is permanently set aside at
compile time, it cannot be recovered. Thus, when a Static array is
erased all of the elements will be cleared to zero, but the memory
that holds the array is not released. Of course, Static arrays may not
be redimensioned.

When a Dynamic array is erased, the memory it occupies is made
available to the program again. And when an array is
redimensioned, the memory is first released, and then claimed again
for the new number of elements. This is an important distinction,
not only because of where the array is located in memory, but also
in the way ERASE operates.

Crescent Software, Inc. 1-93

I

Chapter 1 QuickPak Professional

Yet another way to indicate how an array is to be treated is with the
$STATIC and $DYNAMIC metacommands. By default, any array
dimensioned using a constant for the number of elements will be
Static. However, if the $DYNAMIC metacommand precedes the
dimension statement, QuickBASIC will consider the array to be
Dynamic. If a $STATIC metacommand is then used later on,
subsequent arrays will be static.

We do not recommend using $STATIC or $DYNAMIC, because it
is confusing to keep track of which metacommand is most recently
active. If $DYNAMIC is placed on the first page of a very long
listing, it would be easy to miss next month or next year when you
go back to the program. Using REDIM makes it very clear that the
array is Dynamic-right at the point in the source listing where the
array is dimensioned.

Since Dynamic arrays are always created outside of the normal 64K
string data area, you might think that Dynamic arrays are always
preferable. However, this is not necessarily the case. QuickBASIC
always sets aside as much string space as possible (up to the 64K
limit), but you may not always need that much.

If a program must be able to run on a PC with only 256K of
memory, it is conceivable that your program could end up with lots
of string memory sitting there unused, and not enough far memory
because of all the Dynamic arrays. The best approach is probably to
estimate how much string space a program will require, and then
plan on creating Static arrays to fill what remains.

Fortunately, QuickBASIC provides an easy way to determine
exactly how much memory is being used for both strings and
Dynamic arrays. The FRE('"') function returns the amount of string
space currently available, and FRE(-1) tells how much far memory
remains. You could either sprinkle a few PRINT statements
throughout the program, or use the QuickBASIC Watch capability
to monitor these as the program runs.

The last point that you should be aware of is how dynamic string
arrays are treated. In a conventional string array (not fixed-length),
the strings are always in the 64K data segment regardless of
whether they are static or dynamic. However, a dynamic string
array is completely removed from memory when it is erased, where
a static string array is merely cleared to all null strings.

1-94 Crescent Software, Inc.

QuickPak Professional Chapter 1

SAVING SCREEN IMAGES TO DISK

One of the things we are often asked to explain is how text and
graphic screen images may be saved to disk and loaded again later.
This is actually quite easy to do, however it does require knowing
which type of display is present, and whether the screen is currently
in text or graphics mode.

Text screens are the simplest to save and load, and only requires
knowing whether the monitor is monochrome or color. In IBM
PC/XT/AT/compatible computers, a different area of RAM is used
to hold the screen characters for each of the two display types.

The QuickPak Professional Monitor%0 function can tell you the
exact monitor type that is currently active, but this information may
also be determined by looking in low memory at the BIOS video
status byte.

You may use either DEF SEG and PEEK to access this byte, or the
QuickPak Professional Peekl function which eliminates having to use
DEF SEG. Both methods are shown below.

or

DEF SEG = 0
IF PEEK(&H463) = &HB4 THEN

'mono
ELSE

'color
END IF

IF Peek1%(0, &H463) = &HB4 THEN .
'as above

Once the monitor type is known, a screen may be saved with
BASIC's BSA VE command, or the QuickPak Professional QBSave
which returns an error code. For simplicity, we'll use BASIC's
BSAVE here.

Notice that this example assumes the screen is in the normal
twenty-five line by eighty-column mode. If it is not (and this can be
determined with the GetVMode routine), the number of bytes being
saved must be changed. For example, a 40 by 25 screen occupies
only 2000 bytes, while an 80 by 43 screen requires 6,880 bytes.

Crescent Software, Inc. 1-95

Chapter 1 QuickPak Professional

The size of any text screen may be easily determined by multiplying
the number of rows by the number of columns, and then multiplying
the result by two. The rows and columns must be multiplied by two
because for each character on the screen, a second byte is also used to
hold its color.

IF Peek1%(0, &H463) = &HB4 THEN 'mono
DEF SEG = &HBOOO

ELSE 'color
DEF SEG = &HB800

END IF
BSAVE "screen.", 0, 4000

Here, "screen." would be whatever file name you want to use, the
zero means to save the screen starting at offset zero, and then store
all 4000 bytes.

Loading a previously saved screen is just as easy:

IF Peek1%(0, &H463) = &HB4 THEN
DEF SEG = &HBOOO

ELSE
DEF SEG = &HB800

END IF
BLOAD "screen.", 0

Notice the extra period after the screen name. If this is omitted,
BASIC will stupidly append a .BAS extension, which is obviously
inappropriate. The period forces BASIC to use no extension at all,
though you could of course add one. Also notice that even though a
text screen may have been saved from a color display, it may be
loaded later to a monochrome display or vice versa.

Saving a graphics screen is slightly more complicated, mostly
because of the large number of graphics modes and display
adapters. We'll look at how to save a CGA graphics screen first,
and then an EGA and VGA.

As with the text screens, it is up to you to know how many bytes
must be saved. For this, using GetVMode makes a lot of sense
because among other information, it also returns the size of the
screen currently in use. The page size may also be found by peeking
the two bytes at address 00:44Ch using the QuickPak Peek2
function:

1-96 Crescent Software, Inc.

QuickPak Professional

CALL GetVMode(Mode%, Page%, PageSize%, Rows%, Cols%)

or

PageSize% = Peek2%(0, &H44C)

To save the graphics screen use:

DEF SEG = &HBBDO
BSAVE "gscreen.", 0, PageSize%

To load it back use:

DEF SEG = &HBBOO
BLOAD "gscreen.", 0

Chapter 1

EGA (and VGA) screens are much more complicated than CGA
screens, due to the sheer amount of memory that each screen
occupies. When the original IBM PC was first designed, the
engineers probably had no idea that such high-resolution screens
would ever be connected to it. Because EGA and VGA graphics
screens require much more memory than a PC sets aside for video,
a technique known as "bank switching" is used.

In a bank switched system, more than one block of memory is
accessed by physically switching electrical connections from one
range of addresses in the processor to different areas of RAM. This
is sometimes called "mapping", and in the case of the EGA, only
one of four possible memory banks (or planes) is mapped to the
video address space at a time. Separate planes are used for the red,
green, blue, and intensity (brightness) information. In BASIC, the
current plane may be selected by a series of OUT statements.

Rather than provide a detailed program listing here, we have
included the program EGABSave on the QuickPak Professional
disk. EGABSave is configured to both save and load an EGA hi-res
screen image, though comments in the save subprogram show how
to modify it to instead save the VGA screen 12. When you run
EGABSave, you can clearly see each portion of the screen as it is
reloaded into screen memory.

Crescent Software, Inc. 1-97

I

Chapter 1 QuickPak Professional

SAVING ARRAYS TO DISK

One very important application for BSA VE (and the QuickPak
Professional QBSave routine) is to reduce the time needed to save a
large data file from a numeric array. When an entire array of
numeric data must be saved on a disk, the most common approach
is to create a sequential file, and use the PRINT # statement to write
each value.

Unfortunately, using a sequential file this way is unbearably slow,
because each number must be converted from BASIC's internal
format into a string of ASCII digits. Worse, each number will take
up extra space on disk to store the digits.

That is, the integer value 12345 will occupy six bytes, with one
~ required for each digit, and another for the separating comma that is

also needed. Contrast this with BASIC's method for storing an
integer in memory, where only two bytes are used, regardless of the
variable's value.

Using QBSave (or BASIC's BSA VE) overcomes both of these
problems, by quickly transferring the contents of an entire numeric
array to a disk file. Because the file is simply a "snapshot" of
memory, the operation happens very quickly, without regard for the
meaning of the values in the array. The QuickPak Professional
FPutA routine is equally useful for saving an area of memory, and
it is described in the routines section of this manual.

Though an entire numeric array may be saved in this fashion, you
cannot save a conventional string array. The elements in a string
array are not in contiguous memory locations, rather they are
scattered throughout the 64K string space. A table of pointers then
holds their actual location. However, a fixed-length string array
may be saved, but only if it is no larger than 64K in size. Which
brings up an important point.

The DOS service that writes to a file uses a single word to specify
how many bytes are to be written. This means that in order to
create a file larger than 64K (65536) bytes in length requires
multiple passes. Thus, if you intend to save a "huge" array using
either BSA VE or QBSave, you will need to do so in pieces.

1-98 Crescent Software, Inc.

QuickPak Professional Chapter 1

A related point is how you would specify saving more than 32767
bytes, since that is the largest value that may be held in an integer
variable. In BASIC, integer numbers that are larger than 32767 are
instead considered to be negative.

Though the designers of BASIC could just as easily have allowed
integers to range from 0 through 65535, they decided that a range of
-32768 through 32767 offers more flexibility. Therefore, if you need
to save, say, 43788 bytes, you would first subtract 65536, and then
use the result as an argument to QBSave, as shown below:

ActualBytes! = 43788 'or whatever
IF ActualBytes! > 32767 THEN

NumBytes% = ActualBytes! - 65536
ELSE

NumBytes% = ActualBytes!
END IF

Even more effective would be to use a long integer to specify the
number of bytes. Although QBSave and the other QuickPak
Professional DOS routines expect an integer variable, they will
work just as well with a long integer. The important difference is
that a long integer may be assigned values greater than 32767,
without having to create an artificially negative number.

Determining the number of bytes a given array occupies is quite
easy to do, based on the number of elements it contains and the size
of each element. Each element in an integer array comprises two
bytes, while long integer or single precision variables require 4.
Double precision values need eight bytes each, though a
fixed-length string may of course be any size.

Based on this information, the number of bytes to specify for any
single-dimension array may be computed as follows:

NumBytes = (UBOUND(Array) - LBOUND(Array) + 1) * ElSize

Where ElSize is either two, four, eight, or the length of each
fixed-length string element. But again, remember that this is for
arrays occupying no more than 64K of memory.

Crescent Software, Inc. 1-99

I

I Chapter 1 QuickPak Professional

It is very important to dimension an array that is to be loaded again
later, prior to calling QBLoad or BASIC's BLOAD. Following a
similar logic, you would determine the number of elements needed
by first using the QuickPak Professional FileSize function to obtain
the size of the file. Next, you would subtract the seven bytes taken
by the BSA VE header (see below), since that portion of the file
isn't actually loaded. Finally, divide the result by the size of each
clement.

In truth, you don't really need to subtract the seven byte header,
since dimensioning to more elements than needed won't cause any
harm. However, failing to dimension it large enough is guaranteed
to cause problems.

One additional topic worth mentioning here is the use of a BSA VE
header which is part of the file being saved. When you ask BASIC
to create a file using BSA VE, it creates a seven byte header
immediately before the saved data. This header contains a special
"signature" byte, as well as other information about the file. The
QBSave routine creates this header just as BASIC would, which
allows the file to be read again later using either method.

The very first byte in a BSA VE file is &HFD, which merely
identifies it as having been created by BSA VE. The next four bytes
hold the segment and address from which the data has been saved
respectively. The final byte holds the length of the data in the file,
not including the seven byte header. Notice that the QuickPak
Professional QBLoad command ignores this header, and simply
loads the entire file into memory at the segment and address you
give it.

Finally, you may have noticed in the syntax examples that both
QBLoad and QBSave may be called with a different number of
arguments. When the SEG option is used in a call parameter list,
two addresses are actually passed to the routine. One holds the
segment of the variable, and the other holds its address. SEG
simply lets you pass both of them in a single operation.

However, this means that QBLoad and QBSave must be designed to
expect the value of those addresses, as opposed to BASIC's usual
method of passing an address of a variable. Thus, BYV AL will be
needed if you intend to pass a separate segment and address rather
than specifying an array.

1-100 Crescent Software, Inc.

QuickPak Professional Chapter 1

Because these routines may be called either way, it is important that
you declare them using the same method you intend to use when
you call them. In the DECLARE.BAS file, they have been declared
as SEG, under the assumption that you will be saving and loading
arrays. However, the other method is also shown as comments
immediately below.

A complete discussion of SEG, BYV AL, and other related topics is
given in The Assembly Tutor that accompanies this package.

Crescent Software, Inc. 1-101

I

Chapter 1 QuickPak Professional

CALLING WITH SEGMENTS

Many of the QuickPak Professional routines are intended to help
you manipulate string and numeric arrays. For example, Insert and
Delete will insert or delete elements in a string array much faster
than would ever be possible with a FOR/NEXT loop. However,
some of these array routines are intended to be used with Dynamic
arrays that are not necessarily within BASIC's normal 64K data
segment.

For those routines, it is important that they know not only the
address for a given range of array elements, but the segment as
well. However that segment could be nearly anywhere within a
PC's memory. Beginning with QuickBASIC 4 and BASCOM 6, a
BASIC program can now inform an assembler routine of both the
segment and address.

In QuickBASIC 4 and later, the SEG option is used to indicate that
the segment is to also be included when the array address is passed.
But the problem is using these routines with earlier versions of
QuickBASIC and BASCOM. To solve this, we have provided a set
of routines called Pointers with the QuickBASIC 2 and 3 versions of
QuickPak Professional.

Whenever a routine is shown in the syntax example as being passed
with a SEG statement, you will have to first call one of the Pointers
subprograms to get that extra information. The example below shows
how to set up the call to Fi112 for QuickBASIC 2 and 3, or BASCOM
1 and 2:

CALL PointerI(Array%(), Element%, Segment%, Address%)
CALL Fill2(Segment%, Address%, Value%, Size%)

Contrast this with the QuickBASIC 4 calling method:

CALL Fill2(SEG Array%(Element%), Value%, Size%)

Three different versions of Pointers are provided, with one each
intended for use with integer, single precision, and double precision
arrays. That is, Pointed will locate an integer array element, while
Pointers and PointerD locate a single and double precision element
respectively.

1-102 Crescent Software, Inc.

QuickPak Professional Chapter 1

QuickBASIC 2 and 3 also come with an assembler routine named
PTR86 that serves the same purpose, and you may use that if you
prefer.

Turbo Basic passes all arrays (and normal variables as well), with
the segment automatically, so a separate SEG command is not
needed. Please understand that in each case, the correct version of
QuickPak Professional must be used. The routines that expect the
information as a separate segment and address are not the same
internally as those that expect a SEG address.

Related to this is how a fixed-length string array is passed to the
QuickPak Professional assembler routines. All of the programs that
operate on fixed-length strings are set up to expect a segmented
address when they are called. However, due to a "design decision"
at Microsoft (they tell us it's on purpose), the SEG call option does
not work with fixed-length string arrays.

Rather than pass the true segment and address of the array element
as it does with a numeric array, QuickBASIC instead copies the
element into a conventional string in near memory, and then passes
a segmented address of the copy.

The solution is to create a TYPE array that is comprised solely of a
single fixed-length string member. When SEG is then used on the
TYPE element, the SEG statement will work as expected. Which
brings up an interesting point.

When an array is passed with SEG, two parameters are actually sent
to the subroutine-a segment and an address. Therefore, a SEG call
may be simulated by passing the value of a segment and the value of
an address. Even though it appears that a different number of
parameters is being sent to the routine, in truth, both methods do
exactly the same thing.

Both of the examples below call the ReadFileT routine correctly,
except the second requires the fixed-length array to be dimensioned as
a TYPE:

DIM A(l TD 100) AS STRING* 12
CALL ReadFileT(Spec$, BYVAL VARSEG(A$(1)), BYVAL VARPTR(A$(1)))

Crescent Software, Inc. 1-103

Chapter 1

or

TYPE FLen
Du1111ly AS STRING* 12

END TYPE
DIM A(l TO 100) AS FLen
CALL ReadFileT(Spec$, SEG A(l))

QuickPak Professional

'A() is a TYPE

An example of passing a fixed-length string array both ways is also
given in the APRINTT.BAS demonstration program.

1-104 Crescent Software, Inc.

QuickPak Professional Chapter 1

STORING DATA ITEMS OUTSIDE BASIC'S STRING SPACE

One of the unfortunate limitations with QuiclcBASIC's handling of
strings is the 64K size limit. Even though QuickBASIC offers
"huge" string arrays that can be nearly any size, the real problem is
frequently DATA statements that hold constant information.

As an example, suppose you have a program that relies on many text
strings for various on-line help messages. One typical way to get
these into a program might be with a sequence of READ/DATA
statements like this:

DIM Help$(253)
FOR X = 1 TO 253

READ Help$(X)
NEXT

DATA "Press any key to continue"
DATA "Insert the PROGRAM disk into Drive A"

DATA "Press Fl for help"

Whenever a quoted string appears within a program listing,
QuiclcBASIC must allocate space somewhere to hold it. As you might
imagine, that space is always located within the normal string data
segment. However, even numbers kept as DATA will steal string
memory:

FOR X = 1 TO 10
READ Info%(X)

NEXT
DATA 71, 102, 451, 17, 33, 999, 37, 199, 200, 1034

Since BASIC has no way to know whether the DATA items will
ultimately be read as strings or numbers, it must preserve the text
exactly as it was entered. In the example above, forty five bytes of
string space are taken, not counting the additional twenty bytes of
variable storage also needed when they are assigned into the
Info% O array.

Crescent Software, Inc. 1-105

Chapter 1 QuickPak Professional

Yet another problem with DATA statements is that they are very
slow to read. This problem is made even worse in QuickBASIC 4,
which takes approximately four times longer to read data than
previous versions. Microsoft has advised us that READ/DATA
statements are more flexible than before, which accounts for the
loss in speed. For example, DATA statements in a main program
may now be read by commands in a Quick Library.

One possible solution is to read the data from a disk file when the
program first runs. Using BLOAD to load an entire numeric array
is very fast, especially when compared to opening a file for
sequential input, and reading each item one by one.

However, this requires not only an extra file, but for string data the
space will still be taken away from the available string memory. A
much better method is to store large string constants or array data
within the code segment of a program. As you must know,
QuickBASIC allows a program's code to grow to nearly any size,
and doing this can conserve a considerable amount of string
memory.

The technique about to be described requires an assembler, and is
by necessity more complicated than the READ/DATA method.
However, if there are many strings or a very large amount of
numeric values, the savings will definitely be worth the trouble. In
fact, this is the method we used to store the help screens for the
QEdit text editor included with QuickPak Professional. Besides the
examples about to be described, you may also want to examine the
EDITHELP .ASM source file.

Two files are provided on the QuickPak Professional disk to show
how this may be accomplished. The first is DATA.ASM, and it
shows how to incorporate both string and integer data within an
.OBJ file. The other is DATA.BAS which illustrates how to access
it later. For the purposes of this discussion, you should have
printouts of the programs handy, or have the DATA.ASM file on
your screen.

1-106 Crescent Software, Inc.

QuickPak Professional Chapter 1

For each group of data items that are to be stored, you will need
five sets of statements. The first is a Public clause declaring the
assembler functions that return the string address and length. You
will also need a function to locate the code segment where the data
is being kept-in this case it is called QPGetCS. Once the string has
been located, it is a simple matter to copy it into a "normal" BASIC
string (or a numeric array where appropriate) using the QuickPak
Professional BCopy routine.

Second, a label defining the data's location is needed. This may be
any label name you would like to use, though the examples use
String!, String2, and !Array. For string data the label will be
followed by a DB (define byte) statement, which is then followed by
the quoted string or strings.

Integer data must be defined using DW (define word), followed by
the words of integer data being stored. Other numeric data types
may also be stored, for example DD will set aside space for the
four-byte double words used by long integers.

The third item needed is a DW statement to indicate the length of
the data being stored. Understand that the assembler does all of the
dirty work in locating the data and determining its length. You can
freely add or remove items whenever you want, without ever having
to calculate anything.

The final two are assembler functions that BASIC can call to find
the data, and know how long it is. While all of this may seem like a
lot of work, as you can see from the source listing, each individual
item is very small. Understand that it is not necessary to know how
the assembler functions work, though you will of course need an
assembler to create the .OBJ modules.

A few items deserve special mention, most notably the use of the
"$" operator that indicates to the assembler the current address.
Rather than requiring you to manually count all of the characters in
a string, it makes much more sense to have the assembler do this
for you. Consider the first string, which in the listing is called
Stringl.

Crescent Software, Inc. 1-107

I

Chapter 1 QuickPak Professional

Once the label has been defined, the assembler assumes that you
will want access to the string's address, so it remembers it
internally as it works. The next label-Lengthl-defines a word of
storage, however its value will be automatically set to the difference
in bytes between the Stringl address and itself. Again, to the
assembler a dollar sign means here, and Offset means the address of
whatever label is being referred to.

This process is repeated for the second string variable, and again,
both the string's address and its length are calculated by the
assembler automatically. The integer array data is only slightly
different, because the length of each data element is really two
bytes, not just one. Thus, we ask the assembler to first calculate the
difference in bytes between the labels IArray and LengthI, and then
divide the result by two to derive the number of words. We want
the number of words, so we'll know how large to dimension the
array later in the BASIC program.

Each assembler routine contains only two instructions-a command
to load either the desired address or length into
the AX register, and a Return instruction. Assembler functions are
one of the truly nifty things added to QuickBASIC with version 4,
and they provide a very simple way to access information without
requiring any passed parameters. As you can see in the DATA.BAS
demo, assembler functions must be declared in BASIC before they
are called.

1-108 Crescent Software, Inc.

QuickPak Professional Chapter 1

COMMON PROBLEMS (AND SOLUTIONS)

While we are always pleased to assist you in using any of our
products, you will find the answers to some common problems and
symptoms described below. If you still need assistance, please call
us and we'll be more than happy to help you.

Complete crash or other weird results:

You used the wrong number of variables in a CALL.

You failed to use integer variables with a routine where they are
mandatory.

You specified too many elements with a routine that manipulates
an array.

A SHARED variable isn't being shared correctly:

Using SHARED within a subprogram shares with the main only,
not with any other subprograms. To specify that a variable or
array is to be shared throughout a program requires DIM
SHARED in the main program.

Shared works only within a single program module. To share
variables across modules also requires you to use a COMMON
declaration.

An assembler function doesn't work:

You forgot to declare it, or

You omitted the type-identifier suffix. For example, PrnReady
is an integer function and thus must be declared as

DECLARE FUNCTION PrnReady%()

QuickBASIC Error Messages

Subprogram not defined

You attempted to access an assembler routine in a Quick Library
without using the CALL keyword, but failed to declare the
subprogram in your main BASIC program.

Crescent Software, Inc. 1-109

I

Chapter 1 QuickPak Professional

You called a subprogram that has been declared, but it is not in
the current Quick Library, or you forgot to load the PRO.QLB
Quick Library.

You attempted to call one of the QuickPak Professional BASIC
routines, but have not loaded it as a module. The BASIC
subprograms and functions are not in the Quick Library, and
must be loaded manually.

You used the QuickBASIC Load option to load one of the
demonstration programs instead of using Open. Open is needed
for all of the QuickPak Professional BASIC demos to ensure
that any necessary BASIC modules are also brought in to the
QuickBASIC editor.

String Space Corrupt

This can be caused by a number of different problems. The
biggest culprit is simply a bug in early releases of QuickBASIC
4. This has been corrected in version 4.00b and 4.5. The
version number is always displayed at the bottom of the screen
each time you start the QuickBASIC editor.

Corrupting the string space can also be caused by incorrectly
using a QuickPak routine that manipulates string arrays. For
example, attempting to sort 100 elements in an array that has not
been dimensioned to that size.

Similarly, if you use ReadFile to get a list of file names into a
string array, you must first dimension the array to a sufficient
size, and also set aside space in each string to hold the file
names. The routine FCount is specifically intended as a
companion to ReadFile, and it will report the number of files
that match a given file specification.

String space can also be corrupted in programs with many levels
of subprogram call nesting. The BASIC CLEAR and STACK
commands are needed to reserve additional stack space, and this
is discussed in the section entitled "Sorts vs. Indexed Sorts."

1-110 Crescent Software, Inc.

Chapter 2
Array Routines

QuickPak Professional Chapter 2

Addlnt

assembler subroutine contained in PRO.LIB

Purpose:

Addlnt adds a constant value to all of the elements in a specified
portion of an integer array.

Syntax:

CALL Addlnt(SEG Array%(Start}, Value%, NumEls%)

Where:

Array%(Start) is the first element in the array that is to be
modified, Value% is the value to be added to each element, and
NumEls% is the number of elements to be processed.

Comments:

Addlnt is useful in conjunction with the various indexed sort
routines. Because the indexed sorts have no way to determine which
portion of an array is actually being sorted, the index array is
always returned holding values ranging from zero to the number of
elements minus one. Addlnt allows you to quickly adjust the sorted
index values to reflect the correct element numbers in the primary
array.

Values may also be subtracted from each element by simply using a
negative value.

Addlnt is shown at work in the sort demonstration ISORTSTR.BAS.

Crescent Software, Inc. 2-1

I

Chapter 2 QuickPak Professional

DeleteStr
assembler subroutine contained in PRO.LIB

Purpose:

DeleteStr removes an element from a normal (not fixed-length)
string array.

Syntax:

CALL DeleteStr(BYVAL VARPTR(Array$(Element)), NumE1s%)

Where:

Array$(Element) is the element to be deleted, and NumEls % is the
number of elements that follow.

Comments:

2-2

DeleteStr is functionally equivalent to a FOR/NEXT loop that
copies elements downward, but it operates much faster than would
be possible using BASIC alone. An assembler routine cannot
actually create or assign strings, therefore the deletion is handled
internally by swapping. The algorithm used is:

FOR X = Element TO Element+ NumE1s%
SWAP Array$(X), Array$(X + 1)

NEXT

Because the deletion is performed by swapping, the deleted string
ends up in the last element of the array. You can easily erase the
last element like this:

Array$(Element + NumE1s%) = ""

A complete example of DeleteStr (and its companion program
InsertStr) is contained in the file INSERT.BAS.

Crescent Software, Inc.

QuickPak Professional Chapter 2

DeleteT
assembler subroutine contained in PRO.LIB

Purpose:

DeleteT removes an element from a fixed-length string, numeric, or
user-defined TYPE array.

Syntax:
CALL DeleteT(SEG Array(Element), ElSize%, NumE1s%)

For fixed length strings, see "Calling with Segments" in the
Tutorial section of this manual.

Where:

Array(Element) is the element to be deleted, ElSize % is the size of
each array element (or a special code that is described below), and
NumEls % is the number of elements that follow.

Comments:

DeleteT is functionally equivalent to a FOR/NEXT loop that copies
elements downward, but it operates much faster than would be
possible using BASIC alone. Unlike the Delete routine meant for
string arrays, DeleteT performs a direct memory move copying as
many bytes as needed to effect the deletion. Because memory is
simply copied downward into lower elements, the last element is
still present in the array. You can easily clear it if needed like this:

Array(Element + NumE1s%) = 0
Array$(Element + NumE1s%) = ""

'numeric element
'fixed-length string

The element size indicates how many bytes each element occupies.
For example, you would use 2 for an integer array, and 8 for a
double precision. DeleteT will also accept the codes used by the
TYPE sorts to indicate the element size:

-1 = integer
-2 = long integer
-3 = single precision
-4 = double precision
-5 = currency (BASIC PDS only)

+n = fixed-length string or TYPE with a size of n bytes

Crescent Software, Inc. 2-3

I

I
Chapter 2 QuickPak Professional

DimBits
BASIC subroutine contained in the file BITS.BAS

Purpose:

DimBits creates a BASIC string that will be used to hold a Bit array.

Syntax:

CALL DimBits(Array$, NumE1s%)

Where:

Array$ is returned set to the length needed to hold NumEls % bit
elements, and it is initialized to all zeros.

Comments:

2-4

Bit arrays are useful when a large table of True/False information
must be maintained in as little memory as possible. Where a
conventional integer array requires two bytes to hold even a single
bit of information, a Bit array occupies only the amount of memory
actually needed.

Once a Bit array has been dimensioned, individual elements are
read and assigned using GetBit and SetBit respectively. These
routines are described elsewhere in this manual. Bit arrays are also
discussed at length in the section of this manual entitled "Bit
Arrays".

DimBits is a very simple routine, and may be entered into your
program directly. The actual code is:

Array$= STRING$(NumEls \ B + 1, 0)

A short example of the Bit array routines is contained in the file
BITS.BAS.

Crescent Software, Inc.

QuickPak Professional Chapter 2

Fill2,4,8
assembler subroutines contained in PRO.LIB

Purpose:

Fill2 will quickly assign all of the elements in a specified portion of
an integer array to any value.

Syntax:

CALL Fill2(SEG Array%(Start), Value%, NumEls%)

Where:

Array%(Start) is the first element to be assigned, Value% is the
value the elements are to receive, and NumEls % is the number of
elements to be processed.

Comments:

Fill4 and Fill8 are called exactly the same as Fill2, but are set up to
process single precision (or long integer) and double precision
arrays respectively. All of the passed parameters have the same
meaning as with Fill2, though the appropriate Array and Value
variables should be substituted.

To initialize any array to all zeros (or null strings), the best
approach is to simply redimension it:

REDIM Array(NumEls)

All of the fill routines are demonstrated in the program FILL.BAS.

Crescent Software, Inc. 2-5

I

Chapter 2 QuickPak Professional

Find and Find2
assembler subroutines contained in PRO.LIB

Purpose:

Find will search all or part of a conventional (not fixed-length)
string array forward looking for the first occurrence of a given
string or sub-string.

Syntax:

CALL Find(BYVAL VARPTR(Array$(Start)), NumEls%, Search$)

Where:

Array$(Start) is the element at which searching is to begin,
NumEls% is the number of successive elements to be examined,
and Search$ is the string or sub-string to find.

NumEls % is returned holding the number of elements that were
searched before a match was found, or -1 if there were no matching
elements. If the first element searched matches, NumEls% will
return holding 0.

Comments:

2-6

Find is set up to honor capitalization, and Find2 will ignore it. That
is, Find2 will find "abcde" within the array element "ABCDE",
while Find would not. One or more question marks (?) may also be
used in the search string as a wild card to match any character. The
DOS "*" wild card is implied, and should not be used.

Because Find2 compares strings regardless of capitalization, the
first thing it does is to permanently capitalize the search string. In
designing Find2 we would have preferred to not tamper with the
search string, however that would have either decreased its
performance, or required more string memory to be taken from
your program to hold a temporary working copy.

If it is essential that Search$ not be modified, simply pass a copy of
Search$ as shown below:

CALL Find2(BYVAL VARPTR(Array$(Start)), NumEls%,UCASE$(Search$)

Crescent Software, Inc.

QuickPak Professional Chapter 2

When UCASE$ (or LCASE$) is used within a calling argument,
BASIC will first copy the string into a temporary location, and then
capitalize the copy. Thus, no matter what Find2 does to the search
string, only the temporary copy will be affected.

Find and Find2 are amply demonstrated in the program FIND.BAS,
which also shows how to continue searching an array.

Crescent Software, Inc. 2-7

Chapter 2 QuickPak Professional

FindB and FindB2
assembler subroutines contained in PRO.LIB

Purpose:

FindB will search all or part of a conventional (not fixed-length)
string array for a string or sub-string. Like Find, FindB also accepts
wild cards and is provided in both case-sensitive and
case-insensitive versions. However, FindB and FindB2 search the
string array backwards.

Syntax:
CALL FindB(BYVAL VARPTR(Array$(CurE1%)), CurE1%, Search$)

Where:

Array$(CurEl %) is the current array element at which searching is
to begin, Cur El% is its element number, and Search$ is the string
or sub-string to find.

CurEl % is returned holding the actual number of the element in
which the match was found, or -1 if there were no matching
elements. However, this assumes that the array begins at element
zero.

Comments:

2-8

All of the comments for Find and Find2 apply to FindB and
FindB2, except that continuing an array search is handled
differently.

A complete demonstration for using all four of the Find string array
routines is contained in the FIND .BAS example program.

Crescent Software, Inc.

QuickPak Professional Chapter 2

Find.Exact
assembler subroutine contained in PRO.LIB

Purpose:

FindExact searches an entire conventional (not fixed-length) string
array for an exact match.

Syntax:
CALL FindExact(BYVAL VARPTR(Array$(Start)), NumE1s%, Search$)

Where:

Array$(Start) is the element at which searching is to begin,
NumEls % is the total number of elements to examine, and Search$
is the string to search for. NumEls % returns holding the number of
elements it searched before finding a match, with O meaning it
found it on the first one. If no match is found NumEls % will
instead hold -1.

Comments

Unlike Find, FindB, and the other "Find" routines, this one
searches for an exact match only. Since capitalization is honored
and wild cards are not recognized, this routine is much faster than
the other versions.

Crescent Software, Inc. 2-9

I

Chapter 2 QuickPak Professional

FindT and FindT2
assembler subroutines contained in PRO.LIB

Purpose:

FindT will search all or part of a fixed-length string array for any
string or sub-string.

Syntax:
CALL FindT(BYVAL VARSEG Array$(Start), BYVAL VARPTR Array$(Start), _

ElSize%, NumEls%, Search$)

Where:

Array(Start) is the first element to begin searching, E!Size% is the
length of each element, NumEls% is the number of successive
elements to examine, and Search$ is the string or sub-string to find.

NumEls% is returned holding the number of elements that were
searched before a match was found, or -1 if there were no matching
elements. If the first element searched matches, NumEls % will
return holding 0.

Comments:

FindT is set up to honor capitalization, and FindT2 will ignore it.
That is, FindT2 will find "abcde" within the array element
"ABCDE", while FindT will not. One or more question marks (?)
may also be used in the search string as a wild card to match any
character. The DOS "*" wild card is implied, and should not be
used.

Because FindT2 compares strings regardless of capitalization, the
first thing it does is to permanently capitalize the search string. In
designing FindT2 we would have preferred to not tamper with the
search string, however that would have either decreased its
performance, or required more string memory to be taken from
your program to hold a temporary working copy.

If it is essential that Search$ not be modified, simply pass a copy of
Search$ as shown below:

CALL FindT2(SEG Array(Start), ElSize%, NumEls%,UCASE$(Search$)

2-10 Crescent Software, Inc.

QuickPak Professional Chapter 2

CALL FindT2(SEG Array(Start), E1Size%, NumE1s%,UCASE$(Search$)

When UCASE$ (or LCASE$) is used within a calling argument,
BASIC will first copy the string into a temporary location, and then
capitalize the copy. Thus, no matter what FindT2 does to the search
string, only the temporary copy will be affected.

Notice that Search$ may be either a conventional or fixed-length
string. More information about how BASIC passes strings to a
subroutine may be found in The Assembly Tutor under the section
entitled "Fixed-Length Strings".

FindT and FindT2 are demonstrated in the program FINDT.BAS,
which also shows how to continue searching an array.

Crescent Software, Inc. 2-11

I
Chapter 2 QuickPak Professional

FindTB and FindTB2
assembler subroutines contained in PRO.LIB

Purpose:

FindTB will search all or part of a fixed-length string array for a
string or sub-string. Like FindT, FindTB also accepts wild cards
and is provided in both case-sensitive and case-insensitive versions.
However, FindTB and FindTB2 search the string array backwards.

Syntax:

CALL FindTB(BYVAL VARSEG Array$(CurEl%), BYVAL VARPTR
Array$(CurEl%), ElSize%, CurEl%, Search$)

Where:

Array(CurEl %) is the current array element at which to begin
searching, CurEI % is its element number, and Search$ is the string
or sub-string to find.

CurEI % is returned holding the actual number of the element in
which the match was found, or -1 if there were no matching
elements. However, this assumes that the array begins at element
zero.

Comments:

All of the comments for FindT and FindT2 apply to FindTB and
FindTB2, except that continuing an array search is handled
differently.

A complete demonstration for using all four of the FindT string
array routines is contained in the FINDT.BAS example program.

2-12 Crescent Software, Inc.

QuickPak Professional Chapter 2

FindLast
assembler function contained in PRO.LIB

Purpose:

FindLast scans a conventional (not fixed-length) string array
backwards looking for the last non-blank element.

Syntax:

NumE1s% = UBOUND(Array$)
Last= Findlast%(BYVAL VARPTR(Array$(NumEls%)), NumEls%)

Where:

NumEls % is the number of elements to which Array$ has been
dimensioned, and Last receives the number of the last element that
is not null.

Comments:

Because FindLast has been designed as a function, it must be
declared before it may be used.

FindLast is useful when writing routines that need to know how
many elements in a string array are actually active, even if the array
might have been dimensioned to a larger value.

Though UBOUND will report how large the entire array is, in
many cases what you really want to know is what portion of the
array contains useful information. For example, in the two Lotus
style menu programs provided with QuickPak Professional, it would
be inappropriate to display empty menu choices if the array had
inadvertently been dimensioned to more elements than were
assigned.

Likewise, the QEdit full-screen editor needs to know how many
lines of text are currently in the array, even though the array was
probably dimensioned to a much larger value.

Crescent Software, Inc. 2-13

I

Chapter 2 QuickPak Professional

GetBit
assembler function contained in PRO.LIB

Purpose:

GetBit will report the status (on or off) of an element in a QuickPak
Professional Bit array.

Syntax:

Bit= GetBit%(Array$, Element%)

Where:

Array$ is a string that was previously set up to hold a Bit array,
Element% is the desired element number to retrieve, and Bit
receives either a O if the element is clear, or -1 if it is set.

Comments:

Because GetBit has been designed as a function, it must be declared
before it may be used.

GetBit is set up to return -1 if the element is set rather than a
normal 1. This allows the use of the BASIC NOT operator, and
eliminates the requirement for an explicit comparison against a
particular value. For example, to see if a bit is set, you could use
the following:

IF GetBit%(Array$, 1499) THEN ...

And to determine if the bit is clear, you could instead use:

IF NOT GetBit%(Array$, 1499) THEN ...

Using this approach also eliminates having to perform an explicit
comparison to obtain the bit status:

IF GetBit%(Array$, 20998) = 0 THEN ...

Bit arrays are discussed in depth separately in this manual under the
heading "Bit Arrays".

2-14 Crescent Software, Inc.

QuickPak Professional Chapter 2

IMaxD, I, L, S, C
assembler functions contained in PRO.LIB

Purpose:

IMaxD will search through an entire double precision array, and
return the element number of the largest value. The remaining
functions are designed to operate on integer, long integer, and
single precision arrays respectively. IMaxC is for use with the
Currency data type offered in BASIC PDS.

Syntax:

Element= IMaxD%(SEG Array#(Start), NumE1s%)

Where:

Array#(Start) is the first element to consider when searching the
array, NumEls % is the total number of elements to search, and
Element receives the element number that holds the largest value.

Comments:

Because these routines have designed as functions, they must be
declared before they may be used. Unlike the original Max?
functions that directly return the value of the largest element, these
functions return an element number and are thus designed as integer
functions. If you need both the element number and the value, using
only the IMax function will give you both and avoid adding
redundant code to your program.

The element number returned assumes a zero-based array, and
further, that the entire array is being searched. That is, if the largest
value is found at the first element, the function will return zero. To
accommodate varying start elements simply add the first element
number to the answer returned:

Element= IMaxD%(SEG Array#(l0),NumE1s%)'start at element 10
Element= Element+ 10 'so add 10 here

This is shown in context in the IMINMAX.BAS example program.

Crescent Software, Inc. 2-15

Chapter 2 QuickPak Professional

IMinD, I, L, S, C
assembler functions contained in PRO.LIB

Purpose:

IMinD will search through an entire double precision array, and
return the element number of the smallest value. The remaining
functions are designed to operate on integer, long integer, and
single precision arrays respectively. IMinC is for use with the
Currency data type offered in BASIC PDS.

Syntax:

Element= IMinD%(SEG Array#(Start), NumEls%)

Where:

Array#(Start) is the first element to consider when searching the
array, NumEls % is the total number of elements to search, and
Element receives the element number that holds the lowest value.

Comments:

Because these routines have designed as functions, they must be
declared before they may be used.Unlike the original Min?
functions that directly return the value of the smallest element, these
functions return an element number and are thus designed as integer
functions. If you need both the element number and the value, using
only the IMin function will give you both and avoid adding
redundant code to your program.

The element number returned assumes a zero-based array, and
further, that the entire array is being searched. That is, if the
smallest value is found at the first element, the function will return
zero. To accommodate varying start elements simply add the first
element number to the answer returned:

Element= IMinD%(SEG Array#(l0), NumEls%)'start at element 10
Element= Element+ 10 'therefore add 10 here

This is shown in context in the IMINMAX.BAS example program.

2-16 Crescent Software, Inc.

QuickPak Professional Chapter 2

Initlnt
assembler subroutine contained in PRO.LIB

Purpose:

lnitlnt will quickly initialize all or a specified portion of an integer
array with increasing values.

Syntax:

CALL Initint(SEG Array%(Start), Value%, NumEls%)

Where:

Array%(Start) is assigned Value%, Array%(Start + 1) is assigned
Value% + 1, and so forth, and NumEls% is the total number of
elements to assign.

Comments:

Initlnt is required to initialize the integer index array that will be
used with any of the indexed sorting routines. Though you could
certainly initialize an array with a FOR/NEXT loop, this dedicated
routine will do it much more quickly.

For more information regarding Initlnt and the QuickPak
Professional indexed sort routines, see the section entitled "Sorts
vs. Indexed Sorts" elsewhere in this manual.

Crescent Software, Inc. 2-17

I

Chapter 2 QuickPak Professional

InsertStr
assembler subroutine contained in PRO.LIB

Purpose:

InsertStr will insert an element at any point into a conventional (not
fixed-length) string array.

Syntax:

CALL InsertStr(BYVAL VARPTR(Array$(Element)), Ins$, NumEls%)

Where:

Ins$ will be inserted into the array at the element specified by
Element, and NumEls % is the total number of elements that follow.

Comments:

InsertStr is functionally equivalent to a FOR/NEXT loop that copies
elements upward, but it operates much faster than would be possible
using BASIC alone. An assembler routine cannot actually create or
assign strings, therefore the insertion is handled internally by
swapping. The algorithm used is:

FOR X = (Element+ NumEls%) TO (Element+ 1) STEP -1
SWAP Array$(X), Array$(X - 1)

NEXT
SWAP Array$(Start), Ins$

Because the insertion is performed by swapping, the string that had
originally been in Array$(Element) ends up in Ins$ when the routine
has finished.

It is up to you to insure that the array has been sufficiently
dimensioned to accommodate the inserted element. Specifying more
elements than actually exist is certain to cause a crash. However,
the elements that follow Array$(Element) may be null.

2-18 Crescent Software, Inc.

QuickPak Professional Chapter 2

InsertT
assembler subroutine contained in PRO.LIB

Purpose:

InsertT inserts an element into a fixed-length string, numeric, or
user-defined TYPE array.

Syntax:

CALL lnsertT(SEG Array(Element), ElSize%, NumEls%)

For fixed length strings, see "Calling with Segments" in the
Tutorial section of this manual.

Where:

Array(Element) is the point at which the insertion is to take place,
E1Size% is the size of each array element in bytes (or a special code
that is described below), and NumEls% is the number of elements
that follow.

Comments:

InsertT is functionally equivalent to a FOR/NEXT loop that copies
elements upward, but it operates much faster than would be possible
using BASIC alone. Unlike the Insert routine meant for string
arrays, InsertT performs a direct memory move copying as many
bytes as needed to effect the insertion.

Because memory is simply copied upward into higher elements, the
current element is still present in the array. Also, unlike the Insert
routine for conventional string arrays, you do not specify an
element to be inserted. However inserting the element would then
be as simple as this:

Array(Element) = NewElement

The element size indicates how many bytes each element occupies.
For example, you would use 2 for an integer array, and 4 for a long
integer. InsertT will also accept the same code as the TYPE sort
routines to indicate the element size.

Crescent Software, Inc. 2-19

Chapter 2 QuickPak Professional

ISortD, I, L, S, C
five assembler subroutines contained in PRO.l/8

Purpose:

The five !Sort routines are assembler Quick Sorts for ordering all or
a portion of a numeric array. Each is intended to sort a parallel
INDEX array into either ascending or descending order.

Syntax:

CALL !Sort?(SEG Array(Start), SEG Ndx%(0), NumE1s%, Dir%)

Where:

!Sort? is the appropriate indexed sort routine.

Array(Start) is the first element to include in the sort, and Ndx % (0)
is the starting element in the integer index array. NumEls % is the
number of elements to consider, and Dir% indicates the sort
direction. If Dir% is set to zero, then the sorting will be forward
(ascending). Any other value will cause sorting to be performed
backward (descending).

Comments:

Five separate routines are provided to allow you to add only the sort
capabilities you need to your program. However, the indexed TYPE
sort routine (ISortT) is capable of sorting all of the variable types,
and you might consider using that if your program will need to sort
more than one type of variable. All of these sorts are intended for
IEEE numbers only, and will not work the optional non-8087 /fpa
math BASIC 7 offers.

It is extremely important that the integer index array be
dimensioned to at least the same size as the portion of the primary
array being sorted. It must also be initialized to increasing values
prior to calling the indexed sort routines. That is, Ndx % (0) must
contain a zero, Ndx %(1) will hold a one, and so forth. The routine
I nitlnt is specifically intended for this purpose.

A complete description of these sorts, along with a comparison of
indexed vs. normal sorting, is given elsewhere in this manual.
Please see the section "Sorts vs. Indexed Sorts".

2-20 Crescent Software, Inc.

QuickPak Professional Chapter 2

ISortStr and ISortStr2
assembler subroutines contained in PRO.LIB

Purpose:

ISortStr will sort all or part of a conventional (not fixed-length)
string array into either ascending or descending order by
manipulating elements in a parallel integer index array. ISortStr2 is
nearly identical, but sorting is performed without regard to
capitalization.

Syntax:

CALL !SortStr(BYVAL VARPTR(Array$(Start)), SEG Ndx%(0), _
NumEls%, Dir%)

Where:

Array$(Start) is the first element to include in the sort, and
Ndx % (0) is the starting element in the integer index array.
NumEls % is the number of elements to consider, and Dir%
indicates the sort direction. If Dir% is set to zero, then the sorting
will be forward (ascending). Any other value will cause sorting to
be performed backward (descending).

Comments:

It is extremely important to dimension the integer index array to at
least the same size as the primary array being sorted. Also,
initialize it to increasing values prior to calling the indexed sort
routines. That is, Ndx%(0) must contain a zero, Ndx%(1) will hold
a one, and so forth. The routine lnitlnt is specifically intended for
this purpose.

A complete working example of ISortStr is shown in context in the
ISORTSTR.BAS demonstration program.

Also, a complete description of these sorts, along with a comparison
of indexed vs. normal sorting, is given elsewhere in this manual.
Please see the section "Sorts vs. Indexed Sorts".

Crescent Software, Inc. 2-21

I

Chapter 2 QuickPak Professional

ISortT and ISortT2
assembler subroutines contained in PRO.LIB

Purpose:

ISortT will sort all or part of a fixed-length string or TYPE array
into either ascending or descending order by manipulating elements
in a parallel integer index array. ISortT2 is nearly identical, but
when considering the string component of a TYPE array, sorting is
performed without regard to capitalization.

Syntax:
CALL ISortT(SEG Array(Start), SEG Ndx%(0), NumE1s%, Oir%,

E1Size%, Member0ffset%, MemberSize%)

For fixed length strings, see "Calling with Segments" in the
Tutorial section of this manual.

Where:

Array(Start) is the first element to include in the sort, and Ndx % (0)
is the starting element in the integer index array. NumEls % is the
number of elements to consider, and Dir% indicates the sort
direction. If Dir% is set to zero, then the sorting will be forward
(ascending). Any other value will cause sorting to be performed
backward (descending).

ElSize% is the length of each TYPE array element,
MemberOffset% is the number of bytes into the TYPE where the
key member being considered for the sort is located, and
MemberSize% is its length. MemberSize% is coded using the
convention described in the Comments section below.

If the array being sorted is simply a fixed-length string array, then
MemberSize% and E1Size% will be the same, and MemberOffset%
will be zero.

2-22 Crescent Software, Inc.

QuickPak Professional Chapter 2

Comments:

A special code is used to indicate the type of variable that is being
operated upon. For example, sorting based on the string portion of
a TYPE simply involves comparing the ASCII values for each
character. However, sorting on a double precision component of a
TYPE array requires a very different approach.

The type of variable being considered as the key is indicated to
ISortT and ISortT2 as follows:

-1 = integer
-2 = long integer
-3 = single precision
-4 = double precision
-5 = currency (BASIC PDS only)
+ n = fixed-length string with a length of n bytes

Comments in the description of the ISort routines for numeric
arrays contain important information about preparing the integer
index array. Also, a complete working example of ISortT is
presented in context in the ISORTT.BAS demonstration program.

Crescent Software, Inc. 2-23

I

Chapter 2 QuickPak Professional

KeySort
assembler subroutine contained in PRO.LIB

Purpose:

KeySort is a recursive subprogram that will sort a user-defined
TYPE array based on any number of keys. Each key may be sorted
independently, ascending or descending.

Syntax:

CALL KeySort(SEG Array(Start), E1Size%, NumE1s%,
SEG Table%(1, 1), NumKeys%)

Where:

Array(Start) is the first element to consider in the TYPE array,
E1Size% is the length in bytes of each element, and NumEls % is the
total number of elements to be included. Table%O is a
2-dimensional array which indicates how the primary array is to be
sorted (see below), and NumKeys % is the number of sort keys.

Comments:

In order for KeySort to operate correctly, the Table%() array must
be properly prepared. The size of the first subscript should be
dimensioned to the total number of sort keys, and the second
subscript must be dimensioned to 3. For example, to sort a TYPE
array on two keys you would dimension Table%() like this:

DIM Table%(1 TO 2, 1 TO 3))

In the second subscript, the first element, Table%(n, 1), tells how
many bytes into the structure the current key is located. The second
element, Table%(n, 2), holds the size in bytes of the data, using the
codes shown below. The third element
(n, 3) is either zero to sort ascending, or anything else to sort
descending.

It is important that the table array be dimensioned to the exact size
needed. If the main array is to be sorted on, say, 4 keys, then
Table%O must be dimensioned to only that size:

DIM Table%(1 TO 4, 1 TO 3)).

2-24 Crescent Software, Inc.

QuickPak Professional Chapter 2

Because KeySort calls upon ISortT to do much of the real work, the
data type codes are the same as those used by ISortT:

-1 = 2-byte integer
-2 = 4-byte long integer
-3 = 4-byte single precision
-4 = 8-byte double precision
-5 = currency (BASIC PDS only)
+n = n-byte fixed-length string

The code fragment on the following page was taken from the
KEYSORT.BAS example program. It shows how the TYPE and
table arrays would be set up for sorting on three keys.

Crescent Software, Inc. 2-25

I

Chapter 2 QuickPak Professional

2-26

TYPE Test
I AS INTEGER
LAS LONG
S AS SINGLE
DAS DOUBLE
X AS STRING* 20

END TYPE

NumberOfKeys = 3 'the total number of sort keys
DIM SHARED Table(l TO NumberOfKeys, 1 TO 3)

'Table is a 2-dimensional table of sort information constructed 'as
follows:

'Element 1,1 is the offset into the element for the primary key
'Element 1,2 is a code for the type of data being considered
'Element 1,3 is O or 1 for ascending or descending respectively
'Element 2,1 is the offset into the element for the secondary

key, and so forth, through the last sort key

FOR X = 1 TO NumberOfKeys
FOR Y = 1 TO 3

NEXT

READ Table(X, Y)
NEXT

DATA 18, 20, 0

DATA 0, -1. 1

DATA 10, -4, 0

'read offsets, type codes, and
'directions

'The primary sort is based on
'the fixed-length string, which
'starts 18 bytes into the
'structure. The string length
'is 20, and we want to do an
'ascending sort.

'The integer is the second key,
'its length code is -1, sort
'descending.

'The double precision part is
'the third key, its length code
'is -4, sort ascending.

Crescent Software, Inc.

QuickPak Professional Chapter 2

MaxD, I, L, S, C
five assembler functions contained in PRO.LIB

Purpose:

MaxD, Maxi, MaxL, and MaxS will return the largest value in a
specified portion of a numeric array. Five separate functions are
provided, with one each intended for double precision, integer, long
integer, and single precision arrays. MaxC is for use with the
Currency data type offered in BASIC PDS.

Syntax:

Max= Max?(SEG Array(Start), NumE1s%)

Where:

Max? is either MaxD, Maxi, MaxL, MaxS, or MaxC.

Array(Start) is the first element in the array to be considered,
NumEls % is the number of elements to examine, and Max receives
the value of the largest element. Of course, both the Max variable
and the numeric array must be the appropriate type, based on which
Max routine is being used.

Comments:

Because these have been designed as functions, they must be
declared before they may be used.

The Max functions that operate on floating point arrays expect the
numbers to be in the IEEE format used by QuickBASIC 4.x or later.

Because these are functions, the correct type identifier must be used
when they are declared. For example, MaxL would be declared
with an ampersand like this:

DECLARE FUNCTION Maxl&(SEG Element&, NumE1s%)

Also see the companion routines MinD, Mini, MinL, MinS and
MinC.

Crescent Software, Inc. 2-27

I

Chapter 2 QuickPak Professional

MinD, I, L, S, C
five assembler functions contained in PRO.LIB

Purpose:

MinD, Mini, MinL, and MinS will return the smallest value in a
specified portion of a numeric array. Four separate functions are
provided, with one each intended for double precision, integer, long
integer, and single precision arrays. MinC is for use with the
Currency data type offered in BASIC PDS.

Syntax:
Min= Min?(SEG Array(Start), NumE1s%)

Where:

Min? is either MinD, Mini, MinL, MinS, or MinC.

Array(Start) is the first element in the array to be considered,
NumEls % is the number of elements to examine, and Min receives
the value of the smallest element. Of course, both the Min variable
and the numeric array must be the appropriate type, based on which
Min routine is being used.

Comments:

Because these have been designed as functions, they must be
declared before they may be used.

The Min functions that operate on floating point arrays expect the
numbers to be in the IEEE format used by QuickBASIC 4.x or later.

Because these are functions, the correct type identifier must be used
when they are declared. For example, MinL would be declared with
an ampersand like this:

DECLARE FUNCTION Minl&(SEG Element&, NumE1s%)

Also see the companion routines MaxD, Maxi, MaxL, MaxS and
MaxC.

2-28 Crescent Software, Inc.

QuickPak Professional Chapter 2

Search
assembler subroutine contained in PRO.LIB

Purpose:

Search will scan all or part of a numeric array to find the first
element that matches a given value. Searching may be performed
either forward or backward through the array, and the match may
be specified to be exact, less or equal, or greater or equal.

Syntax:

CALL Search(SEG Array(Start), NumEls%, Match, Found%, _
Direction%, MatchCode%, VarType%)

Where:

Array(Start) is the first array element to include in the search, and
may be of any variable type. NumEls % is the total number of
elements to search, Match is the value to compare against, and it
too may be any type of variable.

Found% then returns a relative displacement (in elements) to the
first element that matches. Direction% is set to Oto search forward,
or anything else to search backward.

MatchCode% indicates the type of search as follows:

0 = find an exact match only
1 = match if the element is greater or equal

-1 = match if the element is less or equal

VarType % is coded following the same convention used by the
TYPE sort routines as follows:

-1 = 2-byte integer
-2 = 4-byte long integer
-3 = 4-byte single precision
-4 = 8-byte double precision
-5 = currency (BASIC PDS only)

Crescent Software, Inc. 2-29

I

I
Chapter 2 QuickPak Professional

Comments:

When Search is used with floating point arrays, it expects the
numbers to be in the IEEE format used by QuickBASIC 4. x or later.

Although the array and the match variables may be any numeric
type, they both must, of course, be of the same type.

A complete working example of using Search in context is shown in
the SEARCH.BAS demonstration program. Besides showing the
correct syntax, SEARCH.BAS also illustrates how to calculate the
found element number based on where Search started, and whether
it was scanned forward or backward.

2-30 Crescent Software, Inc.

QuickPak Professional Chapter 2

SearchT and SearchT2
assembler subroutines contained in PRO.LIB

Purpose:

SearchT and SearchT2 will search an entire TYPE array for a
match on any single TYPE member. When used with the string
portion of a TYPE, SearchT honors capitalization, while SearchT2
ignores it.

Syntax:

CALL SearchT(SEG Array(Start), NumE1s%, Match, Found%, Dir%,
Code%, StructSize%, MemberDff%, MemberSize%)

Where:

Array (Start) is the first TYPE array element to include in the
search.

NumEls % is the number of elements to search.

Match is the value to compare against, and it must be of the same
data type as the TYPE member being examined.

Found% is the number of elements searched before the match was
found.

Dir% is 0 for searching forward, or anything else for backward.

Code% indicates the type of search, using the following code:
0 = exact match
1 = greater or equal

-1 = less or equal

StructSize% is the total size of the TYPE structure in bytes.

MemberOff% is the offset into the structure for the member being
sought.

Crescent Software, Inc. 2-31

I
Chapter 2

MemberSize% is coded as follows:

-1 = 2-byte integer
-2 = 4-byte long integer
-3 = 4-byte single precision

QuickPak Professional

-4 = 8-byte double precision
-5 = 8-byte currency type (BASIC 7 version only)
+ n = the length of the string portion being searched

Comments:

SearchT and SearchT2 are modeled after the Search routine. Where
Search is limited to a conventional numeric array, SearchT lets you
examine just a specified portion of a TYPE array.

Note that the Code% parameter is ignored when searching for
strings, and defaults to O (find an exact match).

2-32 Crescent Software, Inc.

QuickPak Professional Chapter 2

SetBit
assembler subroutine contained in PRO.LIB

Purpose:

SetBit will set an element in a QuickPak Professional Bit array to
either one or zero (true or false).

Syntax:

CALL SetBit%(Array$, Element%, Bit%)

Where:

Array$ is a string that was previously set up to hold the Bit array,
Element% is the desired element number to set, and Bit% holds
either a O if the element is to be cleared, or anything else if it is to
be set.

Comments:

SetBit is provided as a companion to DimBits and GetBit. Bit arrays
are discussed in depth separately in this manual under the heading
"Bit Arrays".

Crescent Software, Inc. 2-33

I

Chapter 2 QuickPak Professional

SortD, I, L, S, C
five assembler subroutines contained in PRO.LIB

Purpose:

The five Sort routines are assembler Quick Sorts for ordering all or
a portion of a numeric array.

Syntax:

CALL Sort?(SEG Array(Start), NumE1s%, Dir%)

Where:

Sort? is the appropriate sort routine.

Array(Start) is the first element to be included in the sort,
NumEls% is the number of elements to consider, and Dir%
indicates the sort direction. If Dir% is set to zero, then the sorting
will be forward (ascending). Any other value will cause sorting to
be performed backward (descending).

Comments:

Five separate routines are provided to allow you to add only the sort
capabilities you need to your program. However, the TYPE sort
routine (SortT) is capable of sorting all of the variable types, and
you might consider using that if your program will need to sort
more than one type of variable.

Theses sort routines assume the use of the IEEE format for floating
point variables.

A complete description of these sorts, along with a comparison of
indexed vs. normal sorting, is given elsewhere in this manual.
Please see the section "Sorts vs. Indexed Sorts".

2-34 Crescent Software, Inc.

QuickPak Professional Chapter 2

SortStr and SortStr2
assembler subroutines contained in PRO.LIB

Purpose:

SortStr will sort all or just a portion of a conventional (not
fixed-length) string array into either ascending or descending order.
SortStr2 is nearly identical, but sorting is performed without r~gard
to capitalization.

Syntax:

CALL SortStr(BYVAL VARPTR(Array$(Start)), NumE1s%, Dir%)

Where:

Array$(Start) is the first element to be included in the sort,
NumEls% is the number of elements to consider, and Dir%
indicates the sort direction. If Dir% is set to zero, then the sorting
will be forward (ascending). Any other value will cause sorting to
be performed backward (descending).

Comments:

A complete working example of SortStr is shown in context in the
SORTSTR.BAS demonstration program.

Also, a description of these sorts, along with a comparison of
indexed vs. normal sorting, is given elsewhere in this manual.
Please see the section "Sorts vs. Indexed Sorts".

Crescent Software, Inc. 2-35

I

I
Chapter 2 QuickPak Professional

SortT and SortT2
assembler subroutines contained in PRO.LIB

Purpose:

SortT will sort all or part of a fixed-length string or TYPE array
into either ascending or descending order. SortT2 is nearly
identical, but when considering the string component of a TYPE
array, sorting is performed without regard to capitalization.

Syntax:

CALL SortT(SEG Array(Start), NumE1s%, Dir%, E1Size%,
Member0ffset%, MemberSize%)

For fixed length strings, see "Calling with Segments" in the
Tutorial section of this manual.

Where:

Array(Start) is the first element to be included in the sort,
NumEls% is the number of elements to consider, and Dir%
indicates the sort direction. If Dir% is set to zero, then the sorting
will be forward (ascending). Any other value will cause sorting to
be performed backward (descending).

E1Size% is the length of each TYPE element, MemberOffset% is
the number of bytes into the TYPE where the key member being
considered for the sort is located, and MemberSize% is its length.
MemberSize % is coded using the convention described in the
Comments section below.

If the array being sorted is simply a fixed-length string array, then
MemberSize% and E1Size% will be the same, and MemberOffset%
will be zero.

Comments:

A special code is used to indicate the type of variable that is being
operated upon. For example, sorting based on the string portion of
a TYPE simply involves comparing the ASCII values for each
character. However, sorting on a double precision component of a
TYPE array requires a very different approach.

2-36 Crescent Software, Inc.

QuickPak Professional Chapter 2

The type of variable being considered as the key is indicated to
SortT and SortT2 as follows:

-1 = integer
-2 = long integer
-3 = single precision
-4 = double precision
-5 = currency (BASIC PDS only)

+ n = fixed-length string with a length of n bytes

Also, a complete working example of SortT is presented in context
in the SORTT.BAS demonstration program.

Crescent Software, Inc. 2-37

I

I

Chapter3
DOS Services

QuickPak Professional Chapter 3

CDir

assembler subroutine contained in PRO.LIB

Purpose:

CDir serves the same purpose as BASIC's CHDIR command, but it
returns a code to indicate an error rather than requiring a separate
error trapping procedure.

Syntax:

CALL CDir(NewDir$)

Where:

NewDir$ is a string containing the new directory to change to.

Comments:

As with DOS, a new directory may be requested for either the
current drive or any other legal drive in the system. For example, to
change the directory on drive B when the current drive is C would
be done like this:

CALL CDir("B:\NEWDIR")

Only two errors are likely when using CDir-either the specified
directory does not exist, or an invalid drive was given. Errors may
be detected with the QuickPak Professional DOSError and
WhichError functions.

Crescent Software, Inc. 3-1

I

Chapter 3 QuickPak Professional

ClipFile
assembler subroutine contained in PRO.LIB

Purpose:

ClipFile will establish a new length for the specified file, and the
new length may be either shorter or longer than the number of bytes
the file presently occupies.

Syntax:

CALL ClipFile(FileName$, NewLength&)

Where:

FileName$ is the name of the file to process, and NewLength& is a
long integer holding the new length the file is to be set to.

Comments:

3-2

One important use for ClipFile is to reduce the length of a file to
which data has inadvertently been written. As an example, if SEEK
(or the QuickPak FSeek) is accidentally used to set the DOS pointer
to a location beyond the end of a data file, the length of the file will
automatically be extended. Another use for Clip File is to truncate a
database file to purge deleted records, as described below. For
ClipFile to work, the file being clipped must be closed.

Many database programs reserve an extra byte in each record just to
indicate whether the record has been deleted or not. Unfortunately,
the only way the deleted data can then be removed from the
database is to move only the active records to a new file one by
one. Once the data has been copied the original file would be
deleted, and the new file renamed.

However, there are several problems with that approach, the worst
being that sufficient free disk space must be present to hold both the
original data and the copy. A better method is to create a program
to copy the deleted records to the end of the file, and then use
ClipFile to set the new length to the end of the last active record. A
program to accomplish this would be written much like a traditional
bubble sort, except only a single pass would be required.

Crescent Software, Inc.

QuickPak Professional Chapter 3

The only error that is likely is attempting to access a file that does
not exist. Errors may be detected with the QuickPak Professional
DOSError and WhichError functions.

Crescent Software, Inc. 3-3

I

I

Chapter 3 QuickPak Professional

DCount
assembler function contained in PRO.LIB

Purpose:

DCount reports the number of directories that match a particular
specification.

Syntax:

Count= DCount%(DirSpec$)

Where:

DirSpec$ holds a DOS directory name specification, and Count
receives the number of matching directories.

Comments:

3-4

Because DCount has been designed as a function, it must be
declared before it may be used.

DCount is intended to provide a count of the directories on a disk,
in preparation for using ReadDir to obtain a list of all their names.

Where FCount provides a count of file names that match a given
specification, DCount instead searches for directory names. It is
important not to confuse these two routines.

Most people think of the DOS wild cards (? and *) as being
applicable only to file names, however they are also intended to be
used with directory names. For example, to use DCount to
determine the number of directories that are under the root
directory, you would specify a search criteria such as "*. *" when
using DCount.

Crescent Software, Inc.

QuickPak Professional Chapter 3

Disklnfo
assembler subroutine contained in PRO.LIB

Purpose:

Disklnfo calls on DOS to examine a disk, and reports its sector and
cluster makeup.

Syntax:

CALL Disklnfo(Drive$, Bytes%, Sectors%, FreeClusters&, TotalClusters&)

Where:

Drive$ contains the letter of the drive to examine, and Bytes%
returns how many bytes each sector holds. Sectors% contains the
number of sectors in each disk cluster, FreeClusters& tells how
many of them are available, and Total Clusters& indicates the total
disk capacity.

Comments:

As with all of the QuickPak Professional DOS services, Drive$ may
be either upper or lower case, or a null string to indicate the default
drive. Since only the first character of Drive$ is examined, you may
also pass a complete file name to Disklnfo if that is more
convenient:

Drive$= "C:WHATEVER.XYZ"

The number of Bytes per sector will always be 512 under DOS,
though the number of sectors per cluster will vary depending on the
type of disk being examined. For example, a 360K floppy disk
always stores two sectors within each cluster, while a 1.2 MB
floppy allocates only one sector per cluster. Thus, a program can
quickly and easily determine what type of disk drive it is dealing
with.

The amount of free space on a disk may easily be calculated by
multiplying the various components that Disklnfo returns.

Also see the DiskRoom and DiskSize functions.

Crescent Software, Inc. 3-5

I

Chapter 3 QuickPak Professional

DiskRoom
assembler function contained in PRO.LIB

Purpose:

DiskRoom returns the number of bytes that are currently available
on a specified disk drive.

Syntax:

Room= DiskRoom&(Drive$)

Where:

Drive$ contains either an upper or lower case letter for the disk
drive being examined, or is null to indicate the default drive. Room
is assigned the number of available bytes.

Comments:

3-6

Because DiskRoom has been designed as a function, it must be
declared before it may be used.

Also see the DiskSize function which returns a disk's total storage
capacity.

Crescent Software, Inc.

QuickPak Professional Chapter 3

DiskSize
assembler function contained in PRO.LIB

Purpose:

DiskSize returns the total capacity in bytes of a specified disk drive.

Syntax:
Size= DiskSize&(Drive$)

Where:

Drive$ contains an upper or lower case letter for the disk drive
being examined, or is null to indicate the default drive. Size is
assigned the total number of bytes the disk can hold.

Comments:

Because DiskSize has been designed as a function, it must be
declared before it may be used.

Also see the DiskRoom function which returns the amount of free
space remaining on a disk.

Crescent Software, Inc. 3-7

Chapter 3 QuickPak Professional

DOSError
assembler function contained in PRO.LIB

Purpose:

DOSError reports if an error occurred during the last call to a
QuickPak Professional DOS routine.

Syntax:

IF DDSError% THEN PRINT "A DOS error occurred"

Where:

DOSError% returns O if there was no error, or -1 if there was.

Comments:

3-8

Because DOSError has been designed as a function, it must be
declared before it may be used.

All of the QuickPak Professional routines assign a value to the
DOSError and WhichError functions to indicate their success or
failure. Rather than requiring you to set up a separate error
handling procedure and use ON ERROR, you can simply query
these functions after performing any QuickPak Professional DOS
operation. DOSError is discussed in the section entitled
"Eliminating ON ERROR".

Also see the complementary function WhichError.

Crescent Software, Inc.

QuickPak Professional Chapter 3

DOSVer
assembler function contained in PRO.LIB

Purpose:

DOSVer returns the version of DOS that is presently running on the
host PC.

Syntax:

Version! = DOSVer% / 100
Major= DOSVer% \ 100
Minor= DOSVer% MOD 100

Where:

Version! is assigned the DOS version number. The major and minor
version components may also be determined as shown in the
example above.

Comments:

Because DOSVer has been designed as a function, it must be
declared before it may be used.

Internally, the DOS service that reports the version number returns
two separate values-the major version and the minor version. For
example, if a PC is using DOS 3.10, then the major version would
be 3, and the minor version 10.

DOSVer simply combines the two into a single value, and then
multiplies the result times 100. This approach is used to eliminate
having to deal with floating point arithmetic in assembly language,
which is a genuine pain to put it mildly.

There are a number of situations where DOSVer will come in
handy. One would be if you are writing a program meant for use on
a network, which of course requires DOS version 3.0 or later.
Also, the QuickBASIC SHELL command does not always work
correctly when a program is running under DOS version 2. Again,
by knowing the DOS version you can avoid potential errors.

Crescent Software, Inc. 3-9

I

I

Chapter 3 QuickPak Professional

ErrorMsg
assembler function contained in PRO.LIB

Purpose:

ErrorMsg returns an appropriate message given any of the BASIC
error numbers for a DOS service.

Syntax:

Message$= ErrorMsg$(ErrorNumber%)

Where:

ErrorNumber% is a valid BASIC error number for a DOS operation.

Comments:

Because ErrorMsg has been designed as a function, it must be
declared before it may be used.

Regardless of how you intend to handle DOS and other errors in
your programs, at some point you will probably need to print a
message to indicate what went wrong. ErrorMsg provides an easy
way to add the standard BASIC error messages without requiring
ERROR, or the wasted string space that results from storing the
messages as text constants or DATA statements.

The text for each message is kept in a table in the code segment,
and is organized such that it may be easily modified or expanded.
This is shown in the ErrorMsg assembler source code.

We have purposely omitted the "normal" BASIC errors such as
Illegal Function Call and Overflow, though these could be added by
modifying the assembler source code. However, two BASIC error
messages that have been included are "Out of string space" and
"Out of memory", which are used in the FastLoad and FastSave
routines described elsewhere.

3-10 Crescent Software, Inc.

QuickPak Professional Chapter 3

ExeName
assembler function con(ained in PRO.LIB

Purpose:

ExeName returns the full name of the currently executing program,
including the drive, path, and file name. ExeName requires DOS
3.0 or higher, and returns a null string when run under DOS 2.

Syntax:

Fu11Name$ = ExeName$

Where:

FullName$ receives a string as "C:\QB\MYPROG.EXE".

Comments:

Because ExeName has been designed as a function, it must be
declared before it may be used.

There are several situations in which it is useful to know the full
name of a program. The most common is when the program
manages one or more data files, or maintains a file of configuration
information. Also, a self-modifying program that writes directly to
its own .EXE file will need to know if it has been renamed.

If the program is run from the current directory, then any necessary
support files will be easily accessible. But when the program is in
another directory and was found by DOS via the PATH setting,
your program would have to parse and search the entire PA TH to
find them. And if the program was started by specifying an explicit
drive or path name, then you're out of luck.

ExeName provides a simple way to determine where the currently
running program resides, by searching the program's environment
table for the drive, path, and file name. This information is placed
there by DOS when a program is first run, thereby reducing the
amount of work that ExeName must do.

Crescent Software, Inc. 3-11

Chapter 3 QuickPak Professional

If the program is located in the current directory or an explicit
directory name was given when the program was started, then the
drive letter and colon will be included. However, there is one
situation in which ExeName will not return the drive as part of the
name.

If the program is not in the current directory but was instead found
by DOS via the current PATH setting, and the path does not include
a drive specifier, then DOS will not place the drive into the
program's environment.

The examples below show what ExeName will return for a program
named MYPROG.EXE that is located in the \UTIL directory, when
\UTIL is not the current directory.

PATH=\UTIL
PATH=C:\UTIL

"\UTIL\MYPROG.EXE"
"C:\UTIL\MYPROG.EXE"

Therefore, if your program lets the operator Shell to DOS or
otherwise change the current drive, you should use the GetDrive
function early in the program to obtain the complete path
information. An example of this is shown below.

N$ = ExeName$
IF INSTR(N$, ":") = 0 THEN N$ = CHR$(GetDrive%) + ":" + N$

3-12 Crescent Software, Inc.

QuickPak Professional Chapter 3

Exist
assembler function contained in PRO.LIB

Purpose:

Exist will quickly determine the presence of a file.

Syntax:
There= Exist%(FileName$)

Where:

FileName$ is the file or file specification whose presence is being
determined, and There is assigned either to -1 if the file exists, or 0
if it does not.

The FileName$ parameter may optionally contain a drive letter, a
directory path, and either of the DOS wild cards. For example,
"B:\STUFF*.BAS" would tell if any BASIC program files are
present on drive B in the \STUFF directory.

Comments:

Because Exist has been designed as a function, it must be declared
before it may be used.

The main purpose of Exist is to prevent the error caused by
attempting to open a file for input when it does not exist. Rather
than having to set up an ON ERROR trap just prior to each attempt
to open a file, Exist will directly tell if the file is present.

In the past, programmers have tried to avoid an error by opening a
file for random access, which does not cause an error. Then the
BASIC LOF function would be used to see if the file's length is
zero, meaning it wasn't there. The problem with that
approach-besides being a lot of extra work-is that an empty file
will be created in the process.

Crescent Software, Inc. 3-13

I

Chapter3 QuickPak Professional

FastLoad and FastSave
BASIC subprograms contained in FASTFILE.BAS

Purpose:

FastLoad and FastSave allow your programs to load and save an
entire text file to/from a conventional (not fixed-length) string array
very quickly.

Syntax:

To load a text file:

Lines= FastLoadint%(FileName$)
REDIM Array$(! TO Lines)
CALL FastLoadStr(Array$())

To save a string array:

CALL FastSave(FileName$, Text$())

Comments:

'load file, get number of lines
'dim the array to receive file
'load the text to the array

Because FastLoadint is designed as a function, it must be declared
before it may be used.

Loading a file requires two steps. The first invokes a function
which actually loads the file into a far (dynamic) integer array, and
then returns the number of string array elements that will be needed
to receive the text. The second step is to call FastLoadStr to copy
the individual string elements into the string array. Saving an array
is simpler, and requires only a single call to the FastSave
subprogram.

In our own informal tests, we measured an improvement in speed of
approximately seven times over the equivalent BASIC statements.
Also, you may be interested to know that we created a dedicated
assembler routine to write all of the elements in a string array to
disk in one operation. Unfortunately, the improvement over BASIC
was negligible.

3-14 Crescent Software, Inc.

QuickPak Professional Chapter 3

For example, to save 500 elements from a string array requires
calling the low-level routines in DOS 1000 times. For each string
element being written, its length and address must be found, and
then DOS must be called to write it to the file. But after each line is
written, another DOS call must be performed to write a carriage
return and line feed. Because of the overhead DOS imposes each
time it is called, it is actually faster to gather up all of the string
elements into an array (using the QuickPak Professional string
manager routines), and then save them in a single operation.

Because the entire file is loaded, there must be both sufficient string
and far memory available to hold it. "Out of memory" errors (or
any DOS errors that are encountered) may be detected with the
DOSError and WhichError functions.

A complete demonstration of implementing these routines is given
in the DEMOF AST .BAS example program.

Crescent Software, Inc. 3-15

I

Chapter 3 QuickPak Professional

FClose
assembler subroutine contained in PRO.l/B

Purpose:

FClose will close a file that had been previously opened with the
QuickPak Professional FOpen command.

Syntax:

CALL FClose(Handle%)

Where:

Handle% is the DOS file handle that was assigned when the file was
first opened.

Comments:

The only error that is likely to happen when using FClose would be
caused by giving it an invalid file handle. Errors may be detected
with the QuickPak Professional DOSError and WhichError
functions.

DOS handles and file access using the QuickPak Professional
routines are discussed elsewhere in this manual in the section
entitled "Eliminating ON ERROR".

3-16 Crescent Software, Inc.

QuickPak Professional Chapter 3

FCopy
assembler subroutine contained in PRO.LIB

Purpose:

FCopy will copy a file from within a BASIC program without
requiring the use of SHELL.

Syntax:

CALL FCopy(Source$, Dest$, Buffer$, ErrCode%)

Where:

Source$ is the source file name, Dest$ is the target file name,
Buffer$ is a temporary work string used internally as a file buffer,
and ErrCode% indicates if an error that occurred was on the source
or destination file.

Comments:

FCopy is a vastly superior method for copying files compared to
using the SHELL command. Besides being much cleaner in general,
using FCopy eliminates a number of problems.

One major limitation of SHELL is that it does not work correctly
with most versions of QuickBASIC under DOS 2. Further, SHELL
internally runs a second copy of COMMAND.COM which requires
sufficient available memory, and also means that
COMMAND.COM must be available. If a PC has been booted
from a floppy disk and that disk is no longer in drive A, the user
will get the "Insert disk with COMMAND .COM" message.

It is important that both the source and destination variables be
complete file names. That is, Dest$ may not be given simply as
"A:" or "C:\STUFF\". Likewise, Source$ may not contain DOS
wild cards to indicate multiple files.

Crescent Software, Inc. 3-17

I

Chapter 3 QuickPak Professional

Further, it is up to your program to provide a buff er to hold the
file's contents as it is being copied. This may be either a
conventional or fixed-length string, but it must be at least 65
characters in length. The minimum recommended buffer size is 512
bytes (the size of a DOS sector), but a string length of 4096 bytes
would be ideal.

Though we could have set aside a buffer area within the FCopy
program, that memory would then be permanently taken from your
program. In truth, having to provide a buffer is a small
inconvenience anyway, because the space can easily be reclaimed
when FCopy has finished. Rather than assign a string prior to
calling FCopy, the best approach would be to have BASIC create it
on the fly as shown below:

CALL FCopy(Source$, Dest$, SPACE$(4D96), ErrCode%)

When SP ACE$0 is used as an argument to a subroutine, the
memory it occupies is released back to the program as soon as the
subroutine finishes.

If the QuickPak Professional DOSError function is zero, then the
copying was successful and you can safely ignore ErrCode%.
Otherwise, if an error occurred processing the source file, then
ErrCode % will return set to 1. A value of 2 indicates a problem
with the destination file. In either case, the QuickPak Professional
WhichError% function should be used to determine the type of
error that occurred.

Also see the related routine FileCopy.

3-18 Crescent Software, Inc.

QuickPak Professional Chapter3

FCount
assembler function contained in PRO.LIB

Purpose:

FCount will report the number of file names that match a particular
specification.

Syntax:
Count= FCount%(FileSpec$)

Where:

FileSpec$ holds a DOS file name or specification, and Count
receives the number of matching entries.

Comments:

Because FCount has been designed as a function, it must be
declared before it may be used.

FCount is intended to provide a count of the files on a disk, in
preparation for using ReaclFile to obtain a list of all their names.

Where DCount provides a count of directory names that match a
given specification, FCount instead searches for file names. It is
important not to confuse these two routines.

You will generally use the DOS wild cards with FCount, for
example "*.BAS" would provide a count of all the BASIC program
files in the current directory on the default disk. Of course, FCount
will also accept a drive letter or path name:

Count= FCount%("D:\LOTUS*.WK1")

Crescent Software, Inc. 3-19

I

Chapter 3 QuickPak Professional

FCreate
assembler subroutine contained in PRO.LIB

Purpose:

FCreate is used to create a file in preparation for writing to it with
the QuickPak Professional file handling routines.

Syntax:

CALL FCreate(FileName$)

Where:

FileName$ is the name of the file to be created.

Comments:

FCreate serves the same purpose as the BASIC OPEN FOR
OUTPUT command followed immediately by a CLOSE. That is, if
the file does not exist it will be created, and if it is already present
it will be truncated to a length of zero bytes.

As with all of the QuickPak Professional file services, FCreate will
also accept an optional drive letter and/or directory path. However,
a wild card is not permitted.

FCreate will not cause an error if the disk is full, because it does
not attempt to write any information to the disk-it merely
establishes a directory entry for the file. In fact, if the file already
exists and it contains data, FCreate will instead free up the disk
space that had been occupied.

There are two probable causes for an error to occur when using
FCreate. Either an invalid file name was given (it contains a wild
card or refers to an invalid directory), or the disk's directory is full.
For example, a 360K floppy disk can accommodate only 112 entries
in its root directory, even if the data area is not filled up.

Errors may be detected with the QuickPak Professional DOSError
and WhichError functions.

3-20 Crescent Software, Inc.

QuickPak Professional Chapter 3

FEof
assembler function contained in PRO.LIB

Purpose:

FEof will report if the current DOS Seek location is at the end of
the specified file.

Syntax:
IF FEof%(Handle%) THEN

Where:

Handle% is the handle that DOS assigned when the file was first
opened using FOpen.

Comments:

Because FEof has been designed as a function, it must be declared
before it may be used.

FEof serves the same purpose as BASIC's EOF function, except it
is intended for use with files that are being manipulated using the
QuickPak Professional file handling routines.

FEof returns -1 if the current DOS Seek location is at the end of the
file, or O if it is not. This allows you to test for an EOF condition
either with or without the BASIC NOT command, as shown below.

or

IF FEof%(Handle%) THEN
PRINT "It's at the end"

END IF

IF NOT FEof%(Handle%) THEN
PRINT "Not at the end"

END IF

If an invalid handle is given, the DOSError and WhichError
functions will be set to indicate the error condition.

Crescent Software, Inc. 3-21

I

Chapter 3 QuickPak Professional

FFlush
assembler subroutine contained in PRO.LIB

Purpose:

FFlush will flush a file's data buffers to disk without requiring the
file to be closed.

Syntax:

CALL FFlush(Handle%)

Where:

Handle% is the file handle that DOS assigned when the file was
first opened.

Comments:

When data is read from or written to disk, it is always first passed
through an area of memory called a file buffer. The total size of the
buffer is determined by the setting of the BUFFERS= statement in
the CONFIG.SYS file. If CONFIG.SYS is not present, then the
number of buffers defaults to either 2 for a PC or XT, or 3 for an
AT. Each buffer comprises 512 bytes of memory, which is the size
of one disk sector.

Buffers are an important factor in speeding up the operation of a
PC, because it allows information that has previously been read or
written to be accessed again later without having to actually read it
from the disk. Further, by always reading an entire sector rather
than only the number of bytes an application requests, subsequent
sequential reads will not require DOS to physically access the disk
again.

However, one problem with buffering disk writing is that the
information is not written to the disk at the time the write is
performed. Rather, the information sits there in memory until the
buffer becomes full, or the file is closed. If your program has just
used PRINT or PUT to write data to a disk file and a power outage
occurs, the data will never be transferred to the file.

3-22 Crescent Software, Inc.

QuickPak Professional Chapter 3

FFlush allows you to force the file buffer's contents to be written to
the disk, but without having to close the file and then re-open it
again.

Unfortunately, FFlush will work only with files that have been
opened and written to using the QuickPak Professional file routines.
It will not flush the buffers for a file written using QuickBASIC's
file commands, because QuickBASIC performs additional buffering
before sending the data to DOS.

The only error that is likely with FFlush is giving it an invalid
handle number. Errors may be detected with the QuickPak
Professional DOSError and WhichError functions.

Crescent Software, Inc. 3-23

I

Chapter 3 QuickPak Professional

FGet
assembler subroutine contained in PRO.LIB

Purpose:

FGet reads data from a disk file in a manner similar to BASIC's
binary GET command, but it returns an error code rather than
requiring the use of ON ERROR.

Syntax:

CALL FGet(Handle%, Destination$)

Where:

Handle% is the DOS file handle that was assigned when the file was
opened, and Destination$ is the string that is to receive the data.
The length of Destination$ determines how many bytes are to be
read.

Comments:

FGet reads data from the specified file at the location held in the
DOS file pointer. The current pointer location is established by the
most recent read or write operation, or by using the BASIC SEEK
command or the QuickPak Professional FSeek subroutine.

The length of Destination$ is used to tell FGet how many bytes it is
to read to insure that sufficient room has been set aside. If FGet had
been written to expect a separate variable to specify the number of
bytes, it would be possible to corrupt string memory by failing to
first assign the string to a sufficient length.

Only two errors are likely when using FGet-either the handle
number was invalid, or the destination string was null. Errors may
be detected with the QuickPak Professional DOSError and
WhichError functions.

Also see the description for the companion routine FGetT, which
reads the file data into a TYPE variable.

3-24 Crescent Software, Inc.

QuickPak Professional Chapter 3

FGetA
assembler subroutine contained in PRO.LIB

Purpose:

FGetA is similar to the QuickPak Professional FGetT routine,
however it accepts a segmented address thus allowing an entire
array to be loaded in one operation. FGetA will load up to 64k
bytes at a time.

Syntax:
CALL FGetA(Handle%, SEG Array(Element), NumBytes%)

Where:

Handle% is the DOS file handle that was assigned when the file was
opened, and Array(Element) is any array (except a conventional
string array) that is to receive the data.

NumBytes% indicates the number of bytes to be read. If the number
of bytes exceeds 32767, then you must instead use a long integer
variable when calling FGetA:

CALL FGetA(Handle%, SEG Array(Element), NumBytes&)

Comments:

FGetA reads data from the specified file at the location held in the
DOS file pointer. The current pointer location is established by the
most recent read or write operation, or by using the BASIC SEEK
command or the QuickPak Professional FSeek subroutine.

FGetA is intended to serve a purpose similar to BASIC's BLOAD
(or the QuickPak Professional QBLoad). As described in the
sections "Saving Arrays to Disk" and "Saving Screen Images to
Disk", loading an entire file in one operation can provide a
tremendous improvement in speed. However, in order to BLOAD a
file, it must have been originally saved in the special format BASIC
uses. FGetA instead loads any data file, without requiring the
special BSA VE header.

Crescent Software, Inc. 3-25

Chapter 3 QuickPak Professional

Also see the description for the companion routine FPutA, which
writes an entire array to disk in a single operation. For reading
data into variables that do not require a segmented address, see the
description for FGetT.

Only two errors are likely when using FGetA-either the handle
number was invalid, or the number of bytes specified was zero.
Errors may be detected with the QuickPak Professional DOSError
and WhichError functions.

Also see the description for the companion routine FPutA, which
writes a file from a segmented address.

3-26 Crescent Software, Inc.

QuickPak Professional Chapter 3

FGetAH
assembler subroutine contained in PRO.LIB

Purpose:

FGetAH will retrieve an entire huge array of any size from disk in a
single operation.

Syntax:

CALL FGetAH(FileName$, SEG Array(Start), E1Size%, NumE1s%)

Where:

FileName$ is the file to be loaded, and Array(Start) is where in
memory to load the file.

E1Size% indicates the length of each array element in bytes (or a
special code to indicate the length), and NumEls % is the number of
elements to be loaded.

Comments:

Unlike the other FGet routines that expect a handle to a file that has
already been opened, FGetAH assumes you want to load the entire
file at once. This eliminates the extra steps of having to first open
the file, remember the handle, load the data, and finally close the
file. FGetAH is used like BASIC's BLOAD (or the QuickPak
Professional QBLOAD routine), except it is not limited to loading
64K or less. FGetAH also accepts the same size code that is used by
the QuickPak Professional TYPE sort routines:

-1 = 2-byte integer
-2 = 4-byte long integer
-3 = 4-byte single precision
-4 = 8-byte double precision

} these codes are
} interchangeable

If an error occurs while reading a file, the DOSError and
WhichError functions will be set appropriately.

Also see the related routine FPutAH.

Crescent Software, Inc. 3-27

I

I

Chapter 3 QuickPak Professional

FGetR
assembler subroutine contained in PRO.LIB

Purpose:

FGetR reads data from a disk file in a manner similar to BASIC's
random GET command, but it returns an error code rather than
requiring the use of ON ERROR.

Syntax:

CALL FGetR(Handle%, Destination$, RecNurnber&)

Where:

Handle% is the DOS file handle that was assigned when the file was
opened, Destination$ is the string that is to receive the data, and
RecNumber& is a long integer that indicates the record to be read.

The length of Destination$ determines how many bytes are to be
read, and is also used with RecNumber& to determine how far into
the file the record is located.

Comments:

The length of Destination$ tells FGetR how many bytes it is to read
to insure that sufficient room has been set aside. If FGetR had been
written to expect a separate variable to specify the number of bytes,
it would be possible to corrupt string memory by failing to first
assign the string to a sufficient length.

Only two errors are likely to occur when using FGetR- either the
handle number was invalid, or the destination string was null.
Errors may be detected with the QuickPak Professional DOSError
and WhichError functions.

Also see the description for the companion routine FGetRT, which
reads the data into a TYPE variable.

3-28 Crescent Software, Inc.

QuickPak Professional Chapter 3

FGetRT and FGetRTA
assembler subroutines contained in PRO.LIB

Purpose:

FGetRT and FGetRTA read data from a disk file in a manner
similar to BASIC' s random GET command, but it returns an error
code rather than requiring the use of ON ERROR.

Syntax:

CALL FGetRT(Handle%, Destination, RecNumber&, RecSize%)

or

CALL FGetRTA(Handle%, SEG Destination, RecNumber&, RecSize%)

Handle% is the DOS file handle that was assigned when the file was
opened, and Destination is TYPE variable that is to receive the
data. RecNumber& indicates the record to be read, and RecSize%
is the length in bytes of each record. RecSize% determines how
many bytes are to be read, and is also used internally by FGetRT
and FGetRTA to determine how far into the file the record is
located.

Comments:

FGetRT and FGetRTA are nearly identical, except that FGetRTA
expects a segmented address. This allows you to load one or more
elements at once directly into a dynamic array. Because it is up to
the program to tell FGetRT how many bytes are to be read, it is
very important that sufficient room has been first set aside in the
destination variable. If this is not done, string memory will
probably be corrupted.

Only two errors are likely to occur when using FGetRT- either the
handle number was invalid, or the record size was given as zero.
Errors may be detected with the QuickPak Professional DOSError
and WhichError functions. Also see FGetR, which reads the data
into a conventional string variable.

Crescent Software, Inc. 3-29

I

Chapter 3 QuickPak Professional

FGetT
assembler subroutine contained in PRO.LIB

Purpose:

FGetT reads data from a disk file in a manner similar to BASIC's
binary GET command, but it returns an error code rather than
requiring the use of ON ERROR.

Syntax:
CALL FGetT(Handle%, Destination, NumBytes%)

Where:

Handle% is the DOS file handle that was assigned when the file was
opened, Destination is the variable that is to receive the data and
may be any type of data except a variable length string.
NumBytes % indicates how many bytes are to be read.

Comments:

FGetT reads data from the specified file at the location held in the
DOS file pointer. The current pointer location is established by the
most recent read or write operation, or by using the BASIC SEEK
command or the QuickPak Professional FSeek subroutine.

Because it is up to the program to tell FGetT how many bytes are to
be read, it is very important that sufficient room has been first set
aside in the destination variable. If this is not done, string memory
will probably be corrupted.

Only two errors are likely when using FGetT-either the handle
number was invalid, or the number of bytes to be read was
specified as zero. Errors may be detected with the QuickPak
Professional DOSError and WhichError functions.

Also see the description for the companion routine FGet, which
reads the data into a conventional string variable. For reading data
into variables that require a segmented address, see the description
for FGetA.

3-30 Crescent Software, Inc.

QuickPak Professional Chapter 3

FileComp
BASIC function contained in FILECOMP.BAS

Purpose:

FileComp will report if any two disk files are the same.

Syntax:
Same= FileComp%{File1$, File2$, ErrCode%)

Where:

File1$ and File2$ are the two files being compared, and Same
receives either -1 if they are the same, or O if they are not.

If a DOS error occurs (file not found, drive door open, etc.), then
ErrCode% will tell which file the error relates to. An ErrCode% of
1 means the problem was with File1$, and 2 means it was with
File2$.

Comments:

Besides returning a true or false condition based on a comparison of
the two files, FileComp also uses the DOSError and WhichError
services to report disk errors. This is illustrated in the
DEMOCOMP .BAS example program.

Crescent Software, Inc. 3-31

I

Chapter 3 QuickPak Professional

FileCopy
BASIC subprogram contained in FllECOPY.BAS

Purpose:

FileCopy is intended to serve as a "front end" to the FCopy
routine, and allows it to accepts wild cards in the source file
specification.

Syntax:

CALL FileCopy(Source$, Dest$, Copied%, ErrCode%)

Where:

Source$ is a file specification such as "*.BAS", and Dest$ is the
target drive or directory. Copied% returns holding the number of
files actually copied. If an error occurs during the copying process,
ErrCode % indicates if the problem was with the source or
destination file.

Comments:

FileCopy augments the assembler FCopy routine by allowing a
group of files to be copied to a new drive or directory. Where
FCopy does not allow wild cards in the source file name or a
destination drive or path only, FileCopy permits both.

FileCopy uses the FCount and ReadFile routines to obtain a list of
all the matching files, and then copies them one by one to the
destination. In fact, because FileCopy processes multiple files, you
must not include a specific target file name.

A typical source and destination specification would be:

or

3-32

Source$= "C:\SUBDIR\FILE*.*"
Dest$= "8:"

Dest$= "\SUBDIR"

Crescent Software, Inc.

QuickPak Professional Chapter 3

or

Dest$= "A:\"

Only two errors are likely when using FileCopy-either no files
were found that matched the file specification, or the source or
destination drive/directory were invalid.

If the copying is successful, ErrCode% will probably hold a value
of 2. This is normal. Therefore, you should always use the
QuickPak Professional DOSError% and WhichError% functions to
see if there really was an error. If so, then ErrCode% reports with
which file the error occurred.

Crescent Software, Inc. 3-33

I

Chapter 3 QuickPak Professional

FileCrypt
BASIC subprogram contained in FllECRPT.BAS

Purpose:

FileCrypt will quickly encrypt any file using a password provided
by the calling program.

Syntax:

CALL FileCrypt(FileName$, Password$)

Where:

FileName$ is the name of the file being encrypted, and Pass Word$
is the password that is to be used.

Comments:

FileCrypt will be used both to encrypt a file and to decrypt it again
later. However, you must provide the identical password each time
FileCrypt is called. Capitalization is important, as well as leading
and trailing spaces.

FileCrypt uses the QuickPak Professional Encrypt routine to
actually process the file's contents. If the file is too long to fit into
memory all at once, it will be processed in pieces.

Rather than simply applying the password you provide when
encrypting the file, FileCrypt first encrypts the password against an
internal string of nonsense characters. This provides an extra
margin of safety in case the file contains a long series of blanks or
zero bytes. Blank spaces and CHR$(0) zero bytes could possibly
reveal the password if the file is carefully examined.

For the best protection, you should select a password that is at least
five characters in length, because the same password is used
repeatedly to encode the file's contents. Since the main objective is
to prevent the file from containing any recognizable pattern, a
longer password will be repeated less often. See the discussion that
accompanies the Encrypt routine for more information about
passwords.

3-34 Crescent Software, Inc.

QuickPak Professional Chapter 3

A complete demonstration of FileCrypt is given in the
DEMOFC.BAS example program. Be very careful when you try it.

The only error that is likely when using FileCrypt is that the
specified file does not exist. Errors may be detected with the
QuickPak Professional DOSError and WhichError functions.

Crescent Software, Inc. 3-35

I

I

Chapter 3 QuickPak Professional

Filelnfo
assembler subroutine contained in PRO.LIB

Purpose:

Filelnfo returns all of the characteristics of a file, including its date,
time, size, and attributes.

Syntax:
CALL Fileinfo(FileName$, SEG TypeVar)

Where:

FileName$ is the name of the file to report on, and Type Var is a
TYPE variable that will receive the information.

Comments:

If the file doesn't exist, the Year portion of the TYPE variable will
be set to zero. The DOSError and WhichError functions may also
be examined to see if an error occurred. If the file name contains
wild cards (* or ?), then the first file matching the specification will
be reported on. The TYPE variable must be set up like this:

3-36

TYPE Flnfo
Year AS INTEGER
Month AS INTEGER
Day AS INTEGER
Hour AS INTEGER
Minute AS INTEGER
Second AS INTEGER
Size AS LONG
Attrib AS INTEGER

END TYPE

Crescent Software, Inc.

QuickPak Professional Chapter 3

The file's attribute is bit-coded as follows:

0 0 1 1 1

Archive ~ Read Only

Subdirectory Hidden

Volume Label System

Two routines are also included with QuickPak Professional to
retrieve only the size of a file. FileSize expects a file name as a
string, while FLof accepts a DOS handle for a file that is currently
open. Also see the GetAttr function for a discussion of the file
attribute byte.

Filelnfo is amply demonstrated in the FILEINFO.BAS example
program.

Crescent Software, Inc. 3-37

I

I

Chapter 3 QuickPak Professional

FileSize
assembler function contained in PRO.l/B

Purpose:

FileSize will quickly return the length of a named file.

Syntax:

Size= FileSize&(FileName$)

Where:

FileName$ is the name of the file, and Size is assigned its length in
bytes. If the file does not exist Size is instead assigned a value of -1.

Comments:

Because FileSize has been designed as a function, it must be
declared before it may be used.

Besides returning a size of -1 if the named file is not present, the
DOSError and WhichError functions may also be examined for
error information.

Also see the description for FLof which returns a file's size, but it
accepts a file handle instead of a name.

3-38 Crescent Software, Inc.

QuickPak Professional Chapter 3

FileSort
BASIC subprogram contained in FILESORT.BAS

Purpose:

FileSort will sort a random access disk file on any number of keys,
and each key may be ordered independently either ascending or
descending.

Syntax:

CALL FileSort(DataFile$, IndexFile$, First&, Last&,Table%(), RecLength%)

Where:

DataFile$ is the name of the data file being sorted, IndexFile$ is the
name of the index file that will be created, and First& and Last&
indicate the range of records to be sorted. If both First& and Last&
are zero, then the entire file will be considered. The Table%0 array
tells FileSort which record fields are to be used as the sort keys,
using the same method as KeySort. RecLength % is the length of
each disk record in bytes. If RecLength % is given as a negative
value, sorting is performed without regard to capitalization.

Comments:

When FileSort is called, it does not actually sort the data file.
Rather, a separate index file is created which holds a list of record
numbers in sorted order. FileSort calls upon KeySort to do the
actual sorting. Therefore, the same method of creating the Table
array is used here. Please see the KeySort description for more
information.

Disk errors may be detected by using the DOSError and
WhichError functions. FileSort is demonstrated in the
DEMOSORT.BAS example program.

Because FileSort needs to create a huge array as part of its internal
operation, you must start BASIC with the /ah option switch.

Crescent Software, Inc. 3-39

Chapter 3 QuickPak Professional

FLinput
assembler function contained in PRO.LIB

Purpose:

FLinput will read a line of input from a file that has been opened
using the QuickPak Professional FOpen routine.

Syntax:

Work$= Fllnput$(Handle%, Buffer$)

Where:

Handle% is the file handle that was assigned when the file was first
opened, and Buffer$ is a temporary work string needed by FLinput
as it reads the file contents.

Comments:

Because FLinput has been designed as a function, it must be
declared before it may be used.

Unlike the other QuickPak Professional binary input routines that
read a specified number of bytes, words, or elements from a file,
FLinput reads until it encounters the CHR$(13) that marks the end
of a line, or the CHR$(26) that indicates the end of a file. For files
that do not contain an end of file marker, FLinput stops reading at
the physical end of the file.

The only errors that are likely when using FLinput are "Input Past
End" (number 62) or "Buffer Too Small" (number 83). It is up to
the calling program to provide a temporary work buffer for
FLinput. If that buff er is too small to read an entire line, you
should invoke FLinput again to obtain the remainder. This is
illustrated in the FLINPUT.BAS example program.

3-40 Crescent Software, Inc.

QuickPak Professional Chapter 3

FLoc
assembler function contained in PRO.LIB

Purpose:

FLoc reports the current DOS file pointer position for files that
have been opened using the QuickPak Professional file services.
FLoc serves the same purpose as BASIC's built-in LOCO function.

Syntax:

Location= FLoc&(Handle%)

Where:

Handle% is the DOS file handle that was assigned when the file was
opened, and Location is assigned to the current DOS file pointer
location. If the handle is invalid Location is instead assigned a value
of -1.

Comments:

Because FLoc has been designed as a function, it must be declared
before it may be used.

Unlike QuickBASIC's SEEK and LOC, FLoc considers the first
byte in a file to be byte 0, not 1. Therefore, FLoc will return a
location of O if the current file pointer is at the beginning of the file.

Besides returning a location of -1 if the handle given is invalid, the
DOSError and WhichError functions may also be examined for the
error information.

Also see the companion program FSeek which will set the file
pointer location.

Crescent Software, Inc. 3-41

I

I

Chapter 3 QuickPak Professional

FLof
assembler function contained in PRO.LIB

Purpose:

FLof returns the length of a file that has been opened with the
QuickPak Professional FOpen subroutine. It is similar to the
FileSize&0 function, except FLof accepts a file handle rather than a
name. FLof serves the same purpose as the BASIC LOF0 function.

Syntax:

Length= Flof&(Handle%)

Where:

Handle% is the DOS file handle that was assigned when the file was
opened, and Length is assigned to the file's length in bytes. If the
handle is invalid Length is instead assigned a value of -1.

Comments:

Because FLof has been designed as a function, it must be declared
before it may be used.

Besides returning a length of -1 if the handle given is invalid, the
DOSError and WhichError functions may also be examined for the
error information.

Also see the FileSize function which returns a file's size, but it
accepts a file name rather than a handle.

3-42 Crescent Software, Inc.

QuickPak Professional Chapter 3

FOpen and FOpenS
assembler subroutines contained in PRO.LIB

Purpose:

FOpen is used to open a disk file in preparation for reading or
writing using the QuickPak Professional file access routines.
FOpenS is identical, except it opens a file for Shared (network)
access.

Syntax:

CALL FOpen(FileName$, Handle%)

or

CALL FOpenS(FileName$, Handle%)

Where:

FileName$ is the name of the file to be opened, and Handle% is
assigned by DOS for all subsequent references to the file. If the file
does not exist or any other error occurs, Handle% will be returned
set to -1.

Comments:

FOpen and FOpenS will open any file, and they also accept an
optional drive or directory as part of the file name. However, they
will not create a file. If you are not sure if a file exists you should
first use the Exist function, or call FCreate to create it.

It is up to your program to remember the handle number that DOS
assigns, and use that number whenever you access the file again
later.

Besides returning a handle of -1 if the named file is not present, the
DOSError and WhichError functions may also be examined for this
information.

Also see the section entitled "Eliminating ON ERROR" for more
information on DOS handles.

Crescent Software, Inc. 3-43

I

I

Chapter3 QuickPak Professional

FOpenAll
assembler subroutine contained in PRO.LIB

Purpose:

FOpenAll will open a file for any access mode, including all of the
variations needed for network operation.

Syntax:
CALL FOpenAll(FlleName$, AccessMode%, ShareMode%, Handle%)

Where:

FileName$ holds the file name to open.

AccessMode %

ShareMode%

0
1
2

0
1
2

3
4

Open file for reading only
Open file for writing only
Open file for reading and writing

Deny sharing access (compatibility mode)
Deny read/write access
Deny write access
Deny read access
Deny none (full share mode)

Handle% returns with the handle number that DOS assigns. If the
file cannot be opened, Handle% will be set to -1.

Comments:

Unlike the QuickPak Professional FOpen routine which opens a file
for read/write access only, FOpenAll provides you with complete
control over all of the possible DOS open parameters. These are
shown in the table above.

Also see the description for the DOSError and WhichError
functions.

3-44 Crescent Software, Inc.

QuickPak Professional Chapter 3

FonnatDiskette
assembler function contained in PRO.LIB

Purpose:

FormatDiskette lets you add disk formatting capabilities to your
programs.

Syntax:

Result= FormatDiskette%(DriveNumber%, Capacity%, SEG BufArray%)

Where:

DriveNumber% refers to a physical drive number with drive A
represented as zero, drive Bas one, and so forth.

The Capacity% argument is given as whole integer values:

360 = 360KB 5.25"
1200 = 1.2MB 5.25"

720 = 720KB 3.5"
1440 = 1.44MB 3.5"

BufArray is a block of memory that FormatDiskette will use as a
work area to hold the disk's FAT (File Allocation Table) as it is
being built.

Result then receives a code that reports if formatting was
successful. See the table below for a list of all possible result
codes.

Comments:

Because FormatDiskette has been designed as a function, it must be
declared before it may be used.

We recommend that you use an integer array as a buffer because it
can be dimensioned before formatting the diskette, and then erased
afterwards. We designed FormatDiskette to require a user-supplied
buffer to avoid having it take the necessary memory permanently
from your program.

Crescent Software, Inc. 3-45

I

Chapter 3 QuickPak Professional

The table below shows how big the buffer must be for each of the
possible diskette capacities. Of course, the buffer can be larger
than necessary and you can use the largest size only, to avoid
having to add extra logic to your program.

Disk Size
360KB
1.2MB
720KB
1.44MB

Table 3-1

Bytes needed
1060
3644
1572
4680

Number of integer elements
REDIM BufArray%(1 TO 530)
REDIM BufArray%(1 TO 1822)
REDIM BufArray%(1 TO 786)
REDIM BufArray%(1 TO 2340)

In the table below, notice that a result code of zero indicates that the
diskette was formatted successfully; any other value means there
was an error.

The only error that is not fatal is 11, which means that bad sectors
were found but were also marked as being bad. This is the same
way the DOS FORMAT program works, in that as long as track
zero is not defective the disk is still usable. If you do receive error
11 you can use the Disklnfo subroutine to compare the number of
total and free clusters. This will tell you how many clusters were
marked as being not available.

3-46 Crescent Software, Inc.

QuickPak Professional

Table 3-2
FormatDiskette error code return values

0 = No error
1 = Invalid disk parameters
2 = Address mark not found
3 = Write protect error
4 = Requested sector not found
5 = Can't locate drive
6 = Disk change line is active
7 = Invalid capacity specified
8 = DMA Overrun
9 = DMA boundary error

10 = Track zero bad
11 = Bad sectors found and marked (not fatal)
12 = Media type not found
16 = CRC read error
32 = Disk controller failure
64 = Seek failure

128 = Drive not ready

Chapter 3

FormatDiskette can be used to format a disk at a lower capacity
than the drive is capable of. For example, you can specify a
capacity of 360KB even if the disk drive can handle 1.2MB disks.
Likewise, you can specify that a 1.44MB diskette be formatted to
only 720KB.

FormatDiskette is demonstrated in the FORMAT .BAS example
program.

Crescent Software, Inc. 3-47

I

Chapter 3 QuickPak Professional

FPut
assembler subroutine contained in PRO.LIB

Purpose:

FPut writes data to a disk file in a manner similar to BASIC's
binary PUT command, but it returns an error code rather than
requiring the use of ON ERROR.

Syntax:

CALL FPut(Handle%, Source$)

Where:

Handle% is the DOS file handle that was assigned when the file was
opened, and Source$ is the string that contains the data to be
written.

The length of Source$ determines how many bytes will be written to
the file.

Comments:

FPut writes data to the specified file at the location held in the DOS
file pointer. The current pointer location is established by the most
recent read or write operation, or by using the BASIC SEEK
command or the QuickPak Professional FSeek subroutine.

Only two errors are likely when using FPut-either the handle
number was invalid, or the source string was null. Errors may be
detected with the QuickPak Professional DOSError and WhichError
functions.

You can treat the file as sequential by appending a carriage
return/line feed to the end of each string as it is written:

CRLF$ = CHR$(13) + CHR$(10)
CALL FPut(Handle%, Source$+ CRLF$)

Also see the description for FPutT, which writes the file data from
information in a string or TYPE variable.

3-48 Crescent Software, Inc.

QuickPak Professional Chapter3

FPutA
assembler subroutine contained in PRO.LIB

Purpose:

FPutA is similar to the QuickPak Professional FPut routine,
however it accepts a segmented address thus allowing an entire
array to be saved in one operation. FPutA will write up to 64k
bytes at a time.

Syntax:
CALL FPutA(Handle%, SEG Array(Start), NumBytes%)

Where:

Handle% is the DOS file handle that was assigned when the file was
opened, and Array(Start) is any array (except a conventional string
array) that is to be saved.

NumBytes % indicates the number of bytes to be written. If the
number of bytes exceeds 32767, then you must instead use a long
integer variable or number.

Comments:

Like its companion program FGetA, FPutA allows your programs
to write an entire numeric or TYPE array to disk in a single
operation.

See the comments that accompany the description for FGetA. For
writing data from variables that do not require a segmented address,
see the description for FPutT.

Crescent Software, Inc. 3-49

Chapter 3 QuickPak Professional

FPutAH
assembler subroutine contained in PRO.LIB

Purpose:

FPutAH will write an entire huge array of any size to disk in a
single operation.

Syntax:

CALL FPutAH(FileName$, SEG Array(Start),ElSize%, NumE1s%)

Where:

FileName$ is the file to be saved, and Array(Start) is the first
element in the array to be written to the file.

E1Size% indicates the length of each array element in bytes (or a
special code to indicate the length), and NumEls % is the number of
elements to write.

Comments:

Unlike the other FPut routines that expect a handle to a file that has
already been opened, FPutAH assumes you want to save the entire
array at once. This eliminates the extra of steps of having to first
open the file, remember the handle, write the data, and finally close
the file. FPutAH is used like BASIC's BLOAD (or the QuickPak
Professional QBLoad routine), except it is not limited to writing
64K or less. FPutAH also accepts the same size code that is used by
the QuickPak Professional TYPE sort routines:

-1 = 2-byte integer
-2 = 4-byte long integer
-3 = 4-byte single precision
-4 = 8-byte double precision

}these codes are
} interchangeable

If an error occurs while writing a file, the DOSError and
WhichError functions will be set appropriately.

Also see the related routine FGetAH.

3-50 Crescent Software, Inc.

QuickPak Professional Chapter 3

FPutR
assembler subroutine contained in PRO.LIB

Purpose:

FPutR writes data to a disk file in a manner similar to BASIC's
random PUT command, but it returns an error code rather than
requiring the use of ON ERROR.

Syntax:

CALL FPutR(Handle%, Source$, RecNumber&)

Where:

Handle% is the DOS file handle that was assigned when the file was
opened, Source$ is the string that holds the data to be written, and
RecNumber& is a long integer that indicates the record to be
written to.

The length of Source$ determines how many bytes are to be
written, and is also used with RecNumber& to determine how far
into the file the record is located.

Comments:

Only two errors are likely to occur when using FPutR-either the
handle number was invalid, or the source string was null. Errors
may be detected with the QuickPak Professional DOSError and
WhichError functions.

Also see the description for the companion routine FPutRT, which
writes the data from a fixed-length string or TYPE variable.

Crescent Software, Inc. 3-51

I

I

Chapter 3 QuickPak Professional

FPutRT and FPutRTA
assembler subroutines contained in PRO.LIB

Purpose:

FPutRT and FPutRTA write data into a disk file in a manner similar
to BASIC's random PUT command, but it returns an error code
rather than requiring the use of ON ERROR.

Syntax:

CALL FPutRT(Handle%, Source, RecNumber&, RecSize%)

or

CALL FPutRTA(Handle%, SEG Source, RecNumber&, RecSize%)

Where:

Handle% is the DOS file handle that was assigned when the file was
opened, and Source is a fixed-length string or TYPE variable that
holds the data to be written. RecNumber& is a long integer that
indicates the record to be written to, and RecSize% is the length in
bytes of each record.

RecSize% determines how many bytes are to be written, and is also
used internally by FPutRT along with RecNumber& to determine
how far into the file the record is located.

Comments:

FPutRT and FPutRTA are nearly identical, except that FPutRTA
expects a segmented address. This allows you to save one or more
elements at once directly from a dynamic array. Only two errors are
likely to occur when using FPutRT or FPutRTA- either the handle
number was invalid, or the record size was given as zero. Errors
may be detected with the QuickPak Professional DOSError and
WhichError functions.

Also see the description for the companion routine FPutR, which
writes the data from a conventional string variable.

3-52 Crescent Software, Inc.

QuickPak Professional Chapter3

FPutT
assembler subroutine contained in PRO.LIB

Purpose:

FPutT writes data to a disk file in a manner similar to BASIC's
binary PUT command, but it returns an error code rather than
requiring the use of ON ERROR.

Syntax:

CALL FPutT(Handle%, Source, NumBytes%)

Where:

Handle% is the DOS file handle that was assigned when the file was
opened, Source is the fixed-length string or TYPE variable that
holds the data being written, and NumBytes indicates how many
bytes are to be written to the file.

Comments:

FPutT writes data into the specified file at the location held in the
DOS file pointer. The current pointer location is established by the
most recent read or write operation, or by using the BASIC SEEK
command or the QuickPak Professional FSeek subroutine.

Only two errors are likely when using FPutT-either the handle
number was invalid, or the number of bytes to be written was
specified as zero. Errors may be detected with the QuickPak
Professional DOS Error and WhichError functions.

Also see the description for the companion routine FPut, which
writes the data from a conventional string variable. For writing
data from variables that require a segmented address, see the
description for FPutA.

Crescent Software, Inc. 3-53

I

Chapter 3 QuickPak Professional

FSeek
assembler subroutine contained in PRO.LIB

Purpose:

FSeek will position the DOS file pointer for a file that has been
opened using the QuickPak Professional FOpen routine.

Syntax:

CALL FSeek(Handle%, Location&)

Where:

Handle% is the handle that DOS assigned when the file was first
opened, and Location& is the location in the file to seek to.

Comments:

Unlike QuickBASIC's SEEK and LOC, FSeek considers the first
byte in a file to be byte 0, not 1. Therefore, to seek to the beginning
of a file you would call FSeek with a location value of 0.

The only error that is likely to occur when using FSeek is giving it
an invalid handle number. Errors may be detected with the
QuickPak Professional DOSError and WhichError functions.

One warning you should be aware of is that seeking to a location
beyond the end of a file will cause it to be extended. This is not a
fault with FSeek, and in fact will happen with QuickBASIC's SEEK
command as well.

To obtain the current seek location for a file, use the QuickPak
Professional FLoc function.

3-54 Crescent Software, Inc.

QuickPak Professional Chapter 3

FStamp
assembler subroutine contained in PRO.LIB

Purpose:

FStamp creates a new date and time for a specified file.

Syntax:

CALL FStamp(FileName$, NewTime$, NewDate$)

Where:

FileName$ is the name of the file to process, NewTime$ is a string
representing the new time, and NewDate$ is a string holding the
new date.

Comments:

FStamp is very capable in that all of the foreign date and time
standards are supported, and the format of the new date and time
strings is quite flexible.

To apply a new time and leave the current date alone, only the
NewTime$ variable should be assigned and NewDate$ will be a null
string. Likewise, if only a new date is required, then NewTime$
would be left null. The current system elate or time may also be
specified by placing an asterisk (*) in either of the strings.

The date and time values must have a valid delimiter between the
various components. For example, a valid date would be any of the
following:

"05/02/88" or "05-02-1988" or "5.2.88" or "5-2-1988"

Regardless of the delimiter used, FStamp will examine the current
country information from DOS, in order to determine which format
is being used. The three methods recognized are American
MM-DD-YY, European DD.MM.YY, or Japanese YY.MM.DD.

Valid delimiters for the time field are either a colon or a period. If
only the hour is given, then the minutes and seconds will be set to
zero:

Crescent Software, Inc. 3-55

I

Chapter 3 QuickPak Professional

NewTime$ = "5"

Similarly, if only the hour and minutes are given, then the seconds
are assumed to be zero:

NewTime$ = "5:05"

The QuickPak Professional DOSError% and WhichError%
functions should be examined to see if an error occurred during the
file stamping operation.

3-56 Crescent Software, Inc.

QuickPak Professional Chapter 3

FullName
assembler function contained in PRO.LIB

Purpose:

FullName accepts a partial file name or file specification, and
returns a fully qualified name that includes the complete path.

Syntax:

Qualified$= FullName$(PartName$)

Where:

PartName$ is a partial path name such as " .. \over\name.dat", and
Qualified$ receives the full path such as "\root\over\name.dat".

Comments:

Because FullName$ has been designed as a function, it must be
declared before it may be used.

Please understand that FullN ame does not check for the validity of
either the directory or path names. It merely reports what the full
name would be under ideal conditions.

FullName uses an undocumented DOS interrupt service to do the
actual work, and requires DOS 3.0 or later.

Crescent Software, Inc. 3-57

I

Chapter 3 QuickPak Professional

GetAttr
assembler function contained in PRO.LIB

Purpose:

GetAttr examines a disk file and reports the setting of its DOS
attribute byte.

Syntax:
Attribute= GetAttr%(FileName$)

Where:

FileName$ is the file being examined, and Attribute is assigned bit
coded with the file's attributes. If the file does not exist or any other
error occurs, the attribute variable will be set to -1.

Comments:

Because GetAttr has been designed as a function, it must be
declared before it may be used.

Every file has an attribute that is assigned at the time it is created.
The attribute information is kept in a disk's directory, along with
each file's name, date, and time. There are six possible attributes a
file can possess, and in many cases it can have more than one. An
assembler program can establish any attribute when it asks DOS to
create a file, however BASIC offers much less flexibility.

The most common file attribute is Archive, and this simply
indicates if the file has been backed up since the last time it was
modified. If the archive portion of the attribute byte is set to 1
(true), then the file has been modified but not backed up. DOS sets
the archive bit every time a file is written to, and most backup
programs clear it as they process each file. Files that are created by
BASIC have the archive attribute only.

The next attribute is Subdirectory, and this indicates that a file is a
DOS subdirectory, as opposed to a program or data file. There is no
real difference between a subdirectory and any other file, other than
the setting of this bit in its attribute byte.

3-58 Crescent Software, Inc.

QuickPak Professional Chapter 3

The third type of attribute is Volume Label. Of course a volume
label isn't actually a file, but rather a name that may be given to a
diskette or hard disk. However, a disk's volume label is kept in the
root directory along with the other file entries.

The final three attributes are System, Hidden, and Read- Only. The
most common system files are IBMBIO.COM and IBMDOS.COM,
though any file could be defined as a system file. Hidden files are
not displayed by the DIR or FILES commands, and a file that has
been marked as read-only may not be altered. Setting a file to
read-only is a good way to prevent it from being accidentally
overwritten or erased.

The attribute returned by GetAttr is in the form of a single byte,
and the placement of the various bits is illustrated in the table below.

b b b b b b b b
i i i i i i i i
t t t t t t t t
7 6 5 4 3 2 1 1

0 0 1 1

Archive ~Read Ooly
Subdirectory Hidden
Volume Label System

Besides returning an attribute of -1 if the named file is not present,
the DOSError and WhichError functions may also be examined for
error information.

The program GETATTR.BAS provides an example of getting a
file's attribute byte, and shows how to isolate and interpret the
individual bits.

Also provided with QuickPak Professional is a companion program
SetAttr that allows setting a file's attribute.

Crescent Software, Inc. 3-59

I

I

Chapter 3 QuickPak Professional

GetDir
assembler function contained in PRO.LIB

Purpose:

GetDir will return the current directory for either a specified drive
or the default drive.

Syntax:

Directory$= GetDir$(Drive$)

Where:

Drive$ is a valid drive letter or a null string to indicate the default
drive, and Directory$ is assigned the name of the current directory.

Comments:

Because GetDir has been designed as a function, it must be declared
before it may be used.

The Drive$ parameter may be given as either upper or lower case,
and only the first character is considered by GetDir.

GetDir returns the complete directory name, minus the drive letter
and colon. However, GetDir does not report if the drive was
invalid. This may be tested after using GetDir by examining the
QuickPak Professional DOSError and WhichError functions.

3-60 Crescent Software, Inc.

QuickPak Professional Chapter 3

GetDisketteType
assembler function contained in PRO.LIB

Purpose:

GetDisketteType returns the type of floppy disk drive that is
installed.

Syntax:

Result%= GetDisketteType%(DriveNumber%)

Where:

DriveNumber% refers to the physical drive number as recognized
by the BIOS. That is, drive A is specified with a value of zero,
drive B with a value of one, and so forth.

The result returned indicates the type of drive as follows:

0 = Drive not present or cannot be identified
1 = 360KB 5.25" 40 track
2 = 1.2MB 5.25" 80 track
3 = 720KB 3.5" 80 track
4 = 1 .4MB 3.5" 80 track

Comments:

Because GetDisketteType has been designed as a function, it must
be declared before it may be used.

In most cases you will use GetDisketteType before calling
FormatDiskette, to ensure that you specify appropriate parameters.
Once the drive type is known you can then proceed to format the
diskette.

GetDisketteType is demonstrated in the FORMAT.BAS example
program.

Crescent Software, Inc. 3-61

I

Chapter 3 QuickPak Professional

GetDrive
assembler function contained in PRO.LIB

Purpose:

GetDrive returns the current default disk drive.

Syntax:

Drive= GetDrive% 'get the drive as an integer

or

Drive$= CHR$(GetDrive%) 'get the drive as a string

Where:

Drive$ is assigned to a value representing an ASCII character that
holds the current default drive. GetDrive actually returns an integer
result, which can be easily turned into a string as shown above.

Comments:

Because GetDrive has been designed as a function, it must be
declared before it may be used.

GetDrive returns a value that represents an upper case ASCII drive
letter. For example, if the current default drive is A, then GetDrive
will return the value 65. Likewise, if the current drive is C,
GetDrive would return 67.

3-62 Crescent Software, Inc.

QuickPak Professional Chapter 3

GetVol
assembler function contained in PRO.LIB

Purpose:

GetVol obtains the disk volume label for either a specified drive or
the current default drive.

Syntax:

Volume$= GetVol$(Drive$)

Where:

Drive$ is either an upper or lower case letter of the drive being
examined, or a null string to indicate the current default drive.
Volume$ is then assigned the disk's volume label.

Comments:

Because GetVol has been designed as a function, it must be
declared before it may be used.

Some programmers like to use a disk's volume label as a way to
keep track of its contents. One example might be when writing a
major accounting program that must also work with a floppy disk
system. You could assign labels for each disk using names such as
"CUSTOMER" and "SALES". Then if the operator inadvertently
put the wrong disk in the drive, your program would know that and
prompt for the correct one.

Also see the companion program PutVol, which will create or
modify a disk volume label.

Crescent Software, Inc. 3-63

Chapter3 QuickPak Professional

GoodDrive
assembler function contained in PRO.LIB

Purpose:

GoodDrive will quickly determine whether a specified drive letter is
valid.

Syntax:

Okay= GoodDrive%(Drive$)

Where:

Drive$ is either an upper or lower case letter that represents- the
drive to check, and Okay receives either -1 if the drive is valid, or
0 if it is not.

Comments:

Because GoodDrive has been designed as a function, it must be
declared before it may be used.

GoodDrive is provided as a companion for the Quick.Pak
Professional LastDrive function. Where LastDrive will return the
last consecutively available drive in a system, GoodDrive checks a
single drive letter for validity.

GoodDrive is needed in those cases where the DOS SUBST
command has been used to create an alias drive letter. For example,
if a system has physical drives A, B, and C, and a RAM disk or
SUBST disk drive G, LastDrive would report drive C as the last
available drive.

If a user then asks your program to save some data to drive G, you
could call GoodDrive to see if G really is valid before displaying a
warning message.

3-64 Crescent Software, Inc.

QuickPak Professional Chapter 3

Handle2Name
assembler subroutine contained in PRO.LIB

Purpose:

Handle2Name returns the name of an open file, given the DOS
handle.

Syntax:

CALL Handle2Name(BYVAL Handle%, FilName)

Where:

Handle% is the DOS handle for an open file, and FilName is a
TYPE variable as described below.

Comments:

The following short complete example shows Handle2Name in
context:

TYPE NameType
FileName AS STRING* 8
Extension AS STRING* 3

END TYPE
DIM FilName AS NameType

PRINT "Handle FileName Ext"
PRINT"-------------------"
FOR Handle%= 0 TO 19

CALL Handle2Name(BYVAL Handle%, FilName)
PRINT TAB(3); Handle%;
PRINT TAB(8); FilName.FileName; " ''; FilName.Extension

NEXT

Crescent Software, Inc. 3-65

I

Chapter 3 QuickPak Professional

KillDir
assembler subroutine contained in PRO.l!B

Purpose:

KillDir will remove a specified directory like BASIC's RMDIR
command, but it returns an error code rather than requiring the use
of ON ERROR.

Syntax:

CALL KillDir(DirName$}

Where:

DirName$ is the directory to be deleted, and may include an
optional drive letter or path.

Comments:

The most common errors that are likely to happen when using
KillDir would be caused by asking it to remove a directory that
doesn't exist, or specifying a directory that contains files. Two
other possibilities would be giving an invalid drive or parent
directory, or using a wild card as part of the directory name. Errors
may be detected with the QuickPak Professional DOSError and
WhichError functions.

The DCount function may be used to determine the presence of any
directory. Even though DCount is meant to return the number of
directory names that match a given specification, it will also accept
a complete directory name. Thus, if the directory exists, DCount
will return 1. And if it doesn't, DCount would instead return 0.

Specifying a directory name can be tricky if it isn't located under a
disk's root directory. For example, to remove the directory LEVEL2
which is under the directory \LEVELl you could use:

CALL Ki llDir("\LEVELl \LEVEL2")

No matter what directory is current, the correct one will be
removed. But if you're already in the \LEVELl directory, you
might instead use:

3-66 Crescent Software, Inc.

QuickPak Professional Chapter 3

CALL Ki11Dir("LEVEL2")

Notice that the leading back slash is not specified in this example. If
it were, DOS would look for a directory named LEVEL2 under the
root directory. Of course, LEVEL2 is really under \LEVELl, so
KillDir would return an error.

Also notice that directory names can have an extension, even
though most people don't bother with extensions when creating a
directory.

Crescent Software, Inc. 3-67

I

I

Chapter 3 QuickPak Professional

KillFile
assembler subroutine contained in PRO.LIB

Purpose:

KillFile will delete a specified file like BASIC's KILL command,
but it returns an error code rather than requiring the use of ON
ERROR.

Syntax:

CALL KillFile(FileName$)

Where:

FileName$ is the file to be deleted, and may include an optional
drive or path but not wild cards.

Comments:

The most common error that is likely to happen when using KillFile
would be caused by asking it to delete a file that isn't there. Two
other possibilities would be specifying an invalid drive or directory,
or if the file has a Read-Only attribute. Errors may be detected with
the QuickPak Professional DOSError and WhichError functions.

The Exist function may be used to determine the presence of file.
Also, a complete discussion of file attributes is given in the section
that describes the GetAttr function.

3-68 Crescent Software, Inc.

QuickPak Professional Chapter 3

LastDrive
assembler function contained in PRO.LIB

Purpose:

LastDrive will report the last consecutively available drive in a PC.

Syntax:

Last= LastDrive%

or

Last$= CHR$(LastDrive%)

Where:

Last receives the ASCII value of an upper case letter that represents
the last consecutively available drive.

Comments:

Because LastDrive has been designed as a function, it must be
declared before it may be used.

LastDrive returns the last consecutive drive letter that is present,
but it does not always take into account "alias" drives that may also
be valid.

For example, a system may have physical drives labeled A through
C, as well as a RAM disk set up as drive D. In that case, LastDrive
will return 68, which is the ASCII for the letter "D". However, if
the DOS SUBST command is also being used to assign a phantom
drive "H" to a DOS subdirectory, LastDrive will not detect that.

Adding the code to scan through all of the possible drives is not
difficult. However, that would mislead your program into believing
that drives E, F, and G were also available when they are not.

If you suspect that there may be valid drives beyond the one
reported by LastDrive, you should use the GoodDrive function to
tell if it really is present. GoodDrive will accept any drive letter,
and return -1 if the drive is actually valid.

Crescent Software, Inc. 3-69

I

Chapter 3 QuickPak Professional

LineCount
assembler function contained in PRO.LIB

Purpose:

LineCount will quickly count all of the lines of text in a specified
file.

Syntax:

Count= LineCount%(FileName$, Buffer$)

Where:

FileName$ is the name of the file to examine, and may contain an
optional drive letter or path name. Buffer$ is a temporary work area
needed by LineCount to hold the file, and Count receives the
number of lines of text.

If there are more than 32767 lines in the file (very unlikely if you
think about it), LineCount will return a negative number. Simply
add 65536 to that number to get the actual count.

If the file doesn't exist or some other error occurs, Count will
instead receive -1.

Comments:

Because LineCount has been designed as a function, it must be
declared before it may be used.

Besides returning a count of -1 if the file is not present, the
QuickPak Professional DOSError and WhichError functions may be
examined for error information.

The main purpose of LineCount is to report the number of lines in a
text file, in preparation for dimensioning an array to hold them.
When a program will be reading a text file into an array, knowing
this ahead of time can be a big help. The only other possibilities
would be to read through the entire file once just to count the lines,
or guess at how large to dimension the array to.

3-70 Crescent Software, Inc.

QuickPak Professional Chapter 3

BASIC's INPUT command on sequential files is painfully slow,
because every character must be examined looking for a CHR$(13)
that marks the end of a line, or a CHR$(26) that marks the end of
the file. Further, numbers stored in a sequential file must be
converted to the internal format used by BASIC which also takes
time. This clearly rules out reading the file an extra time just to
count the lines.

Guessing at how large to dimension an array is an equally poor
practice. If you guess too small, you'll either crash completely, or
at best have to re-dimension the array and start all over again. And
if you guess too high, you've wasted four bytes of string memory
for each extra element that was created.

One important caveat you should be aware of when using
LineCount is that it merely counts the number of CHR$(13)
carriage returns in the file. (Though it does so much faster than
BASIC ever could.) Line feeds are not considered at all.

Another important point is that your program must provide a data
buffer to hold the file's contents as it is examined. This will be
supplied in the form of a conventional or fixed-length string, and it
must be at least 256 characters long. The minimum recommended
buffer size is 512 bytes (the size of a DOS sector), but a string
length of 4096 bytes would be ideal.

Though we could have set aside a buffer area within the LineCount
program, that memory would then be permanently taken from your
program. In truth, having to provide a buffer is a small
inconvenience anyway, because the space can easily be reclaimed
when LineCount has finished. Rather than assign a string prior to
calling LineCount, the best approach would be to have BASIC
create it on the fly as shown below:

Count= LineCount%(FileName$, SPACE$(4096))

When SPACE$ (or STRING$) is used as an argument to a
subroutine, the memory it occupies is released back to the program
as soon as the subroutine finishes.

Crescent Software, Inc. 3-71

Chapter 3 QuickPak Professional

LoadExec
assembler function contained in PRO.LIB

Purpose:

LoadExec is a SHELL replacement that lets you execute another
program, and then retrieve its exit code (the DOS error level).

Syntax:

ExitCode = LoadExec%(Prograrn$, Crndline$)

Where:

Program$ is the full name of the program to be run, and CmdLine$
is an optional command line parameter that is passed to the
program.

Comments:

Because LoadExec has been designed as a function, it must be
declared before it may be used.

LoadExec can be used to run .EXE and .COM programs only. You
cannot run a batch file or other non-executable program directly
(but see below).

Note that the DOS service that LoadExec uses does not honor the
PATH setting. Therefore, you must state the complete drive and
path if they are not the current default. See the SearchPath$
function elsewhere in this manual, which examines the PATH and
returns the fully qualified name of an executable program.

Normally, ExitCode will receive a value between O and 255,
corresponding to the exit code returned by the program that was
executed. However, it is also possible that the value may be higher
if DOS intervened in the program's termination. Here's how you
can determine how the program was ended, and isolate the two
separate pieces of information:

3-72 Crescent Software, Inc.

QuickPak Professional Chapter 3

IF ExitCode <= 255 THEN
PRINT "Normal termination with an exit code of"; ExitCode

ELSE
DOSCode = ExitCode \ 256
ExitCode = ExitCode AND 255
PRINT "DOS intervened"
SELECT CASE DOSCode

CASE 1

'isolate DOS's contribution
'optionally retain the program's part

PRINT "You pressed Ctrl-C or Ctrl-Break to end the program"
CASE 2

PRINT•~ critical error occurred and you pressed A (Abort)"
CASE 3

PRINT "The program ended as a TSR -- reboot now!"
CASE ELSE

END SELECT
END IF

Due to a bug in DOS 2.x you should not use LoadExec with that
version of DOS. You can prevent this by first querying the DOSVer
function, and checking for a value of at least 300. Related to the
DOS 2.x issue, some older programs (including CHKDSK and
FORMAT) require a DOS 1.x style FCB structure to be present.
To avoid adding a lot of code to accommodate what is clearly a
waning method, LoadExec does not support those either.

LOADEXEC.BAS shows how to use LoadExec with the
SearchPath$ function, and also how to execute batch files. Besides
interpreting return codes, it also shows how to detect DOS errors
using WhichError.

Crescent Software, Inc. 3-73

I

Chapter 3 QuickPak Professional

LockFile
assembler subroutine contained in PRO.LIB

Purpose:

LockFile will lock all or a portion of a network file, but without
needing ON ERROR.

Syntax:

CALL LockFile(Handle%, Offset&, Length&)

Where:

Handle% is the handle assigned by DOS when the file was opened,
Offset& is the starting offset into the file where locking is to begin,
and Length& is the number of bytes to lock.

Comments:

Only two errors are likely when using LockFile, 73 and 85, and
these may be determined with the QuickPak Professional DOSError
and WhichError functions.

To use LockFile you must provide a file handle, as well as the
range of bytes to lock. These are easily determined based on the
record number being locked, and the length of each record. File
offsets are zero-based, which means that the first byte in the file is
zero, not one. If the file is successfully locked, it will not be
necessary to do so again in BASIC. Also, portions of a file must be
unlocked in the exact same manner in which they were locked. If
you lock;, say, bytes 100 through 200, then you must unlock the
identical range later.

Understand that when an application locks all or part of a file, the
locking applies only to other programs. Although other programs
are restricted from both reading and writing to that portion of the
file, your application still has complete access to the entire file. See
the LOCKFILE.BAS demonstration program for a complete
example that shows how to calculate the Offset& and Length&
parameters.

3-74 Crescent Software, Inc.

QuickPak Professional Chapter 3

MakeDir
assembler subroutine contained in PRO.LIB

Purpose:

MakeDir will create a directory in the same way that BASIC's
MKDIR will, but without requiring the need for ON ERROR.

Syntax:

CALL MakeDir(DirName$)

Where:

DirName$ is the name of the directory to create, and may also
include an optional drive letter or path.

Comments:

The only errors that are likely to happen when using MakeDir
would be caused by specifying an invalid drive letter, or a parent
directory that does not exist. Errors may be detected with the
QuickPak Professional DOSError and WhichError functions.

Specifying a directory name can be tricky if it isn't located under a
disk's root directory. For example, to create the directory LEVEL2
under the directory \LEVELl you could use:

CALL MakeDir("\LEVEL1\LEVEL2")

No matter what directory is current, the correct one will be created.
But if you're already in the \LEVELl directory, you might instead
use:

CALL MakeDir("LEVEL2")

Notice that the leading back slash is not specified in this example. If
it were, DOS would create a directory named LEVEL2 under the
root directory, which of course is not what was intended.

Crescent Software, Inc. 3-75

I

I

Chapter 3 QuickPak Professional

NameDir
assembler subroutine contained in PRO.LIB

Purpose:

NameDir will rename a directory.

Syntax:

CALL NameDir(OldName$, NewName$)

Where:

OldName$ is the original directory name, and NewName$ is the
name it is to become.

Comments:

The only errors that are likely to occur when using N ameDir would
be specifying OldName$ for a directory that doesn't exist, or giving
a NewName$ for a directory that does. One other possibility would
be using a wild card in either name.

Errors may be detected with the QuickPak Professional DOSError
and WhichError functions.

The DCount function may be used to determine the presence of a
directory.

It is important to understand that renaming a directory from within
a running program can be dangerous. For example, if you allow a
user to rename directories, you may not be able to find a data file
afterward. Also, if a directory that is one or more levels above the
current one is changed, then the current directory's name will be
changed as well.

It is important that you provide only the new name as the second
parameter, and not a drive letter or path. For example, if
OldName$ is "C:\OLD", then New Name$ should be "NEW" and
not "C:\NEW".

3-76 Crescent Software, Inc.

QuickPak Professional Chapter 3

NameFile
assembler subroutine contained in PRO.LIB

Purpose:

NameFile will rename a file in the same way that BASIC's NAME
AS command will, but without requiring ON ERROR.

Syntax:

CALL NameFile(OldName$, NewName$)

Where:

OldName$ is the name the file currently has, and NewName$ is the
name it is to become.

Comments:

The only errors that are likely to occur when using NameFile would
be specifying OldName$ for a file that doesn't exist, or giving a
NewName$ for a file that does. Two other possibilities would be
using a wild card in either name, or if the file has a Read-Only
attribute. Errors may be detected with the QuickPak Professional
DOSError and WhichError functions.

The Exist function may be used to determine the presence of a file.
Also, a complete discussion of the Read-Only and other file
attributes is given in the section that describes the GetAttr function.

Crescent Software, Inc. 3-77

I

Chapter 3 QuickPak Professional

NetDrive
assembler function contained in PRO.l/B

Purpose:

NetDrive reports if a given drive is remote (on a network).

Syntax:

Remote= NetDrive%(Drive$)

Where:

Drive$ is a letter that specifies the drive to test, or a null string to
examine the current drive. Remote then receives -1 if the drive is
in fact on a network, or zero if it is not.

Comments:

Because NetDrive has been designed as a function, it must be
declared before it may be used.

Drive$ may be upper or lower case, and only the first character is
considered. If Drive$ is null, the current default drive is tested.
NetDrive requires DOS 3.10 or later, and returns O (not network)
with no other error if the DOS version is less than that.

The following complete example program shows NetDrive in
context:

3-78

DECLARE FUNCTION NetDrive%(Drive$)
IF NetDrive%(Drive$) THEN

PRINT Drive$; " is a remote network drive"
ELSE

PRINT Drive$; " is a local non-network drive"
END IF

Crescent Software, Inc.

QuickPak Professional Chapter 3

PutVol
assembler subroutine contained in PRO.LIB

Purpose:

PutVol will create a disk volume label for either a specified drive or
the current default drive. If a label already exists, PutVol will
instead rename it.

Syntax:
CALL PutVol(Drive$, Label$)

Where:

Drive$ is either an upper or lower case letter for the drive being
examined, or a null string to indicate the current default drive.
Label$ is then written to the disk's directory as a volume label.

Comments:

Some programmers like to use a disk's volume label as a way to
keep track of its contents. One example might be when writing a
major accounting program that must also work with a floppy disk
system. You could then label the customer file disk, say,
"CUSTOMER", and the inventory disk "INVENTORY". If a user
inadvertently puts the wrong disk in the drive, your program could
know that and prompt for the correct one.

A disk volume label may be up to eleven characters in length.

Also see the companion program GetVol, which will obtain the
volume label from a disk.

Crescent Software, Inc. 3-79

I

I

Chapter 3 QuickPak Professional

QBLoad
assembler subroutine contained in PRO.LIB

Purpose:

QBLoad serves the same purpose as BASIC's BLOAD command,
but it returns an error code rather than requiring the use of ON
ERROR.

Syntax:

CALL QBLoad(FileName$, SEG Array%(Element))

or

CALL QBLoad(FileName$, BYVAL Segment%, BYVAL Address%)

Where:

FileName$ is the name of a file that had been previously saved
using either QBSave or BASIC's BSA VE.

To load the file into Array(Element) specify the array element as
shown, or use the Segment% and Address% method to load it into
memory at any location.

Comments:

The only errors that are likely to be encountered with QBLoad
would be specifying a file that doesn't exist, or giving an invalid
drive letter or path. Errors may be detected with the QuickPak
Professional DOSError and WhichError functions.

Two important uses for QBLoad and BASIC's BLOAD are saving
and loading graphics or text screen images, or reducing the time
needed to load a numeric array. Saving and loading screens is
covered in depth in the appendix of this manual, and manipulating
arrays this way is discussed in the description of the QBSave
routine.

3-80 Crescent Software, Inc.

QuickPak Professional Chapter 3

QBSave
assembler subroutine contained in PRO.LIB

Purpose:

QBSave serves the same purpose as BASIC's BSA VE command,
but it returns an error code rather than requiring the use of ON
ERROR.

Syntax:

CALL QBSave(FileName$, SEG Array%(Element), NumBytes%)

or

CALL QBSave(FileName$, BYVAL Segment%, BYVAL Address%, NumBytes%)

Where:

FileN ame$ is the name of the file, and NumBytes % indicates how
many bytes to save. NumBytes may also be a long integer if more
than 32,767 bytes will be saved.

To save a file from Array% (Element%) specify the array element as
shown, or use the Segment% and Address% method to save it from
any memory location.

Comments:

One important use of both QBSave and QBLoad is to overcome a
bug in BLOAD and BSA VE with early versions of QuickBASIC 4.
However, Microsoft has fixed this problem in version 4.00b.

The only errors that are likely to occur when using QBSave is
giving it an illegal file name, specifying an invalid drive letter or
path, or not having sufficient room on the disk.

Errors may be detected with the QuickPak Professional DOSError
and WhichError functions.

Crescent Software, Inc. 3-81

Chapter 3 QuickPak Professional

Quick.DOS
BASIC program contained in QD.BAS

Purpose:

Unlike most of the QuickPak Professional routines that are intended
to be added to your programs, QuickDOS is a complete stand-alone
DOS utility program. It allows you to mark a group of files for
copying, deleting, or moving to a new disk or directory. The files
that are displayed may be sorted by name, extension, date, or size,
and an entire directory may be marked or unmarked with a single
key press.

Most of QuickDOS' features will be obvious as soon as it is run,
however you will have to compile it to a stand-alone program as
shown at the beginning of the source listing. Instructions are given
for both Quick.BASIC 4 and the BASCOM 6 version of the
BC.EXE compiler.

QuickDOS is fully "mouse aware", and it lets you control all
aspects of the program's operation, except for entering and editing
file names and directory specifications. However, there are a few
hidden features you should also be aware of.

Pressing Alt-R when an .EXE, .COM, or .BAT file name is
highlighted tells QuickDOS to run the program or batch file. Even
though Quick.BASIC programs can normally run only other .EXE
files, the StuffBuf routine is used to place the .COM or batch file's
name into the keyboard buffer. Thus when QuickDOS subsequently
ends, the program is run as if you had entered the name manually.
Notice that this does not work if you are running QuickDOS from
within the Quick.BASIC editor.

Alt-S is similar to Alt-R, except it tells QuickDOS to SHELL and
run the currently marked program, and then return.

The last hidden feature is Alt-F, which creates a file that contains a
list of the names of all the marked files. This is extremely useful for
creating a LINK or LIB response file. Once the list file has been
created, simply edit it to add the appropriate response file
punctuation. Creating response files is discussed in detail in this
manual under the section entitled "Response Files".

3-82 Crescent Software, Inc.

QuickPak Professional Chapter3

QuickDOS will also accommodate any of the text screen modes.
That is, if the screen is displaying 43 or 50 lines when QuickDOS is
started, the size of the vertical menu and the range of mouse
movements will be adjusted automatically.

Finally, QuickDOS recognizes several command line arguments:

ID sort files by date and show full file information
IE sort files by extension
IH use maximum number of lines possible with EGANGA
IN sort files by name
IS sort files by size
C: \ *. * or any other valid file specification
? display a list of all command line options
HELP same as ?

Crescent Software, Inc. 3-83

I

Chapter 3 QuickPak Professional

ReadDir
assembler subroutine contained in PRO.LIB

Purpose:

ReadDir obtains a list of directory names from disk, and loads them
into a conventional (not fixed-length) string array in one operation.

Syntax:

CALL ReadDir(BYVAL VARPTR(Array$(D)))

Where:

Array$(0) holds the search specification to indicate which directory
names are to be loaded, and subsequent array elements receive each
directory name.

Comments:

It is essential that enough elements have been set aside in the string
array to hold all of the anticipated directory names. Further, each
element must first be assigned to a length of at least twelve spaces
to reserve room for each name. All of the steps needed to obtain a
list of directory names are outlined below.

Before the array can be dimensioned to hold the directory names,
you will need some way to determine how many there are. The
easiest way to do this is with the DCount function. DCount accepts
the same type of search specification you will give to ReadDir, and
it tells how many matching directories there are.

The next step is to dimension the array to the number of elements
DCount returned. Finally, space must be set aside in each element
to hold the names. Including a possible extension, a directory name
may be as long as twelve characters.

Most people think of the DOS wild cards (? and *) as being
applicable only to file names, however they are also intended to be
used with directory names. For example, to read a list of directory
names that begin with the letter "A" and are located under the root
directory, you would specify a search specification of "\A*.*"
when using DCount and ReadDir.

3-84 Crescent Software, Inc.

QuickPak Professional Chapter]

The program fragment below shows how to obtain a list of all
directories under the current directory of drive C.

Spec$= "C:*.*"
Count= DCount%(Spec$)
DIM Array$(D TD Count)

'*.* matches any directory name
'see how many there are

FOR X = 1 TO Count
Array$(X) = SPACE$(12)

NEXT

'create the string array

'fill each element with spaces

Array$(0) = Spec$ 'put the spec in element 0
CALL ReadDir(BYVAL VARPTR(Array$(0))) 'call ReadDir

FOR X = 1 TO COUNT
PRINT Array$ (X)

NEXT

'print them to show it worked

A complete directory searching program is provided in the file
named READDIRS.BAS. READDIRS will search through all of the
directories on a disk-no matter how deeply nested-and display all
of the files that match a given specification. READDIRS is similar
to the various "WHEREIS" programs available in the public
domain, and it illustrates how recursion can be used to advantage in
such a situation.

Also see the related routine ReadDirT that reads a list of directory
names into a fixed-length string or TYPE array.

Crescent Software, Inc. 3-85

I

Chapter 3 QuickPak Professional

ReadDirs
BASIC example program contained in READDIRS.BAS

Purpose:

Unlike most of the QuickPak Professional subroutines that are
called by your BASIC programs, ReadDirs is intended to serve as
an example for calling the various DOS services. It is also a very
handy utility program.

ReadDirs first asks for a file specification such as "C: *. *" or
"*.BAS", and then searches all of the directory levels on the disk
for files that match. When running ReadDirs, do not give it a
directory name for the files, because all of the disk's directories
will be searched automatically.

ReadDirs brings together a number of important DOS routines that
are provided with this package, and provides examples for using
them in context. It also illustrates how recursion can be used to
advantage when navigating tree structured data such as a disk's
directory.

3-86 Crescent Software, Inc.

QuickPak Prqfessional Chapter 3

ReadDirT
assembler subroutine contained in PRO.LIB

Purpose:

ReadDirT obtains a list of directory names from disk, and loads
them into a fixed-length string array in one operation.

Syntax:

CALL ReadDirT(Spec$, BYVAL VARSEG(Array$(1)), BYVAL VARPTR(Array$(1)))

or

CALL ReadDirT(Spec$, SEG Array(!))

Where:

Array$0 has been dimensioned as a fixed-length string array, and
Spec$ holds the search specification to tell which directory names
are to be loaded. Subsequent array elements then receive each
directory name.

Comments:

It is essential that enough elements have been set aside in the string
array to hold all of the anticipated directory names. Further, the
size of each element must be exactly twelve, to reserve room for
each name.

Crescent Software, Inc. 3-87

Chapter3 QuickPak Professional

The steps needed to read directory names into a fixed-length string
array are similar to those for a conventional string array, as outlined
in the example for ReadDir. However, there are some differences,
and a modification of the code shown in the ReadDir example is
given below.

Spec$= "C:*,*"
Count= DCount%(Spec$)
DIM Array{l TO Count) AS STRING* 12

CALL ReadDirT{Spec$, BYVAL VARSEG{Array${1)), BYVAL VARPTR(Array${1)))

FOR X = 1 TO Count
PRINT Array${X)

NEXT

You should be aware that it is also possible to call ReadDirT
without having to deal with the BYV AL/V ARSEG/V ARPTR
nonsense, and simply give it the starting array element. The SEG
call option allows an entire array to be passed to an assembler
routine. However, a "design decision" at Microsoft prevents this
from working with fixed-length string arrays. The key is to create a
TYPE consisting solely of a single string member, and then pass the
TYPE element with SEG.

To use this method you will need to declare ReadDirT with the
"SEG varname AS ANY" option as shown below.

DECLARE SUB ReadDirT{Spec$, SEG Element AS ANY)

TYPE FLen
S AS STRING * 12

END TYPE

Spec$= "C:*.*"
Count= DCount%{Spec$)
DIM Array{l TO Count) AS FLen

CALL ReadDirT(Spec$, Array(l))

FOR X = 1 TO Count
PRINT Array(X).S

NEXT

See the section entitled "Calling With Segments" in Chapter 1, for
a complete discussion of passing fixed-length string and TYPE
arrays to assembler routines.

3-88 Crescent Software, Inc.

QuickPak Professional Chapter3

ReadFile
assembler subroutine contained in PRO.LIB

Purpose:

ReadFile obtains a list of file names from disk, and loads them into
a conventional (not fixed-length) string array in one operation.

Syntax:

CALL ReadFile(BYVAL VARPTR(Array$(0)))

Where:

Array$(0) holds the search specification to indicate which file
names are to be loaded, and subsequent array elements receive each
name.

Comments:

It is essential that enough elements have been set aside in the string
array to hold all of the anticipated file names. Further, each element
must first be assigned to a length of at least twelve spaces to reserve
room for each name. All of the steps needed to obtain a list of file
names are outlined below.

Before the array can be dimensioned to hold the names, you will
need some way to determine how many there are. The easiest way
to do this is with the FCount function. FCount accepts the same
type of search specification you will give to ReadFile, and it tells
how many matching names there are.

The next step is to dimension the array to the number of elements
FCount returned. Finally, space must be set aside in each element
to hold the names. Including a possible extension, a file name may
be as long as twelve characters.

Crescent Software, Inc. 3-89

I

Chapter 3 QuickPak Professional

The DOS wild cards will most likely be used in the search
specification, and an optional drive letter or path may also be
included. For example, to read a list of file names that begin with
the letter "A" and are located under the root directory, you would
specify a search specification of "\A*.*" when using FCount and
ReadFile. To obtain a list of all BASIC program files in the current
directory you would instead use "*.BAS".

The example program below shows how to obtain a list of all the
file names under the current directory of drive C.

Spec$= "C:*.*"
Count= FCount%(Spec$)
DIM Array$(0 TO Count)

FOR X = 1 TO Count
Array$(X) = SPACE$(12)

NEXT

'*.* matches any file name
'see how many there are
'create the string array

'fill each element with spaces

Array$(0) = Spec$ 'put the spec in element 0
CALL ReadFile(BYVAL VARPTR(Array$(0))) 'call ReadFile

FOR X = 1 TO Count
PRINT Array$(X)

NEXT

'print them to show it worked

A complete directory searching program is provided in the file
named READDIRS.BAS. READDIRS will search through all of the
directories on a disk-no matter how deeply nested-and display all
of the files that match a given specification. READDIRS is similar
to the various "WHEREIS" programs available in the public
domain, and it illustrates how recursion can be used to advantage in
such a situation.

Also see ReadFileT which loads a group of file names into a
fixed-length string or TYPE array.

3-90 Crescent Software, Inc.

QuickPak Professional Chapter 3

ReadFilel
assembler subroutine contained in PRO.LIB

Purpose:

ReadFileI obtains a list of file names, sizes, dates, and times from
disk, and then formats and loads them into a conventional (not
fixed-length) string array in one operation.

Syntax:

CALL ReadFilel(BYVAL VARPTR(Array$(0)))

Where:

Array$(0) holds the search specification to indicate which file
names are to be retrieved, and subsequent array elements receive
each file's name and related information.

Comments:

ReadFileI (Read File names with full Information) is similar to the
QuickPak Professional ReadFile routine, except it also obtains the
size, date, and time for each file. Before ReadFileI, the only way to
do this was to call the ReadFile routine, and then call Fileinfo
repeatedly for each file. Besides greatly simplifying the amount of
work you must do to obtain this information, ReadFileI is also
considerably faster.

Because an assembly language routine cannot create BASIC strings,
it is up to you to assign each string to a length of 37 characters
before calling ReadFilel. The example below shows all of the steps
needed to set up and call ReadFilel.

Crescent Software, Inc. 3-91

I

I

Chapter 3 QuickPak Professional

Spec$="*.*"
Count= FCount%(Spec$)
DIM Array$(Count)

FOR X = 1 TO Count
Array$(X) = SPACE$(37)

NEXT

'or whatever
'see how many files there are
'make an array to hold the files

'fill each with blanks
'37 are needed for the information

Array$(0) = Spec$ 'assign search spec to lowest element
CALL ReadFileI(BYVAL VARPTR(Array$(0))) 'call ReadFileI

FOR X = 1 TO Count
PRINT Array$ (X)

NEXT

'print the files to prove it worked

The information returned in each element of the array is organized
as shown in the table below. The name can be up to twelve
characters, the size could hold as many as eight digits, the date is
always eight digits, and the time is always six. A single blank space
is placed between each field area in the string.

1234567890123456789012345678901234567
namename.ext sizesize mm-dd-yy hh:rrm* <---- either "a" or "p"

Also see the comments that accompany the ReadFile routine for
more information about the search specification and the FCount
function.

ReadFilel is demonstrated in the READFILI.BAS example program.

3-92 Crescent Software, Inc.

QuickPak Professional Chapter3

ReadFileT
assembler subroutine contained in PRO.LIB

Purpose:

ReadFileT obtains a list of file names from disk, and loads them
into a fixed-length string array in one operation.

Syntax:

or

Where:

CALL ReadFileT(Spec$, BYVAL VARSEG(Array(l}), BYVAL _
VARPTR(Array(l)))

CALL ReadFileT(Spec$, SEG Array(l))

Array() has been dimensioned as a fixed-length string array, and
Spec$ holds the search specification to tell which file names are to
be loaded. Subsequent array elements then receive each name.

Comments:

It is essential that enough elements have been set aside in the string
array to hold all of the anticipated file names. Further, the size of
each element must be exactly twelve, to reserve room for each
name.

The steps needed to read file names into a fixed-length string array
are similar to those for a conventional string array, as outlined in
the example for ReadFile. However, there are some differences,
and a modification of the code shown in the ReadFile example is
given on the following page.

Crescent Software, Inc. 3-93

I

Chapter3 QuickPak Professional

Spec$= "C:*.*"
Count= FCount%(Spec$)
DIM Array(l TO Count) AS STRING* 12

CALL ReadFileT(Spec$, BYVAL VARSEG(Array$(1)), BYVAL
VARPTR(Array$(1)))

FOR X = 1 TO Count
PRINT Array$(X)

NEXT

You should be aware that it is also possible to call ReadFileT
without having to deal with the BYV AL/V ARSEG/V ARPTR
nonsense, and simply give it the starting array element. The SEG
call option allows an entire array to be passed to an assembler
routine. However, a "design decision" at Microsoft prevents this
from working with fixed-length string arrays. The key is to create a
TYPE consisting solely of a single string member, and then pass the
TYPE element with SEG.

To use this method you will need to declare ReadFileT with the
"SEG varname AS ANY" option, and then call it as shown below.

DECLARE SUB ReadFileT(Spec$, SEG Element AS ANY)
TYPE FLen

SAS STRING* 12
END TYPE

Spec$= "C:*.*"
Count= FCount%(Spec$)
DIM Array(l TO Count) AS FLen

CALL ReadFileT(Spec$, Array(l))

FDR X = 1 TO Count
PRINT Array(X).S

NEXT

As you can see, the SEG method of calling ReadDirT is simpler
than using BYV AL V ARSEG() and BYV AL V ARPTR(), however
it works only if the fixed-length string array has been dimensioned
as a TYPE array. A complete discussion of passing fixed-length
string and TYPE arrays is given in Chapter 1, under the section
entitled "Calling With Segments".

3-94 Crescent Software, Inc.

QuickPak Professional Chapter3

ReadFileX
assembler subroutine contained in PRO.LIB

Purpose:

Like ReadFilel, ReadFileX (Read File names Extended) obtains a
list of file names, sizes, dates, and times from disk, except it places
these into separate components of a TYPE array.

Syntax:

CALL ReadFileX(Spec$, DirSize&, SEG Array(l))

Where:

Spec$ holds the search specification to indicate which file names are
to be retrieved, DirSize& receives the total of all the file sizes, and
elements in the array receive each file's name and related
information.

Comments:

ReadFileX expects you to pass to it a user-defined TYPE array that
has been dimensioned sufficiently for the number of files that will
be read. This array must be structured and dimensioned as follows:

TYPE Fulllnfo 'this is the TYPE definition
BaseName AS STRING* 8
ExtName AS STRING* 3
FileSize AS LONG
FileDate AS STRING* 8
FileTime AS STRING* 6
Attrib AS STRING* 1

END TYPE
Count= FCount%(Spec$) 'use FCount to count the files
DIM Array(l TO Count) AS Fulllnfo 'dimension the array

Please see the comments that accompany the description for
ReadFilel elsewhere in the manual.

ReadFileX is demonstrated in the READFILX.BAS example
program.

Crescent Software, Inc. 3-95

I

Chapter 3 QuickPak Professional

ReadSect
assembler subroutine contained in PRO.LIB

Purpose:

ReadSect will read the contents of any disk sector into a
conventional (not fixed-length) string.

Syntax:

CALL ReadSect(Drive$, Info$, Sector%)

Where:

Drive$ is an upper or lower case letter specifying the disk drive to
read from. Unlike most of the other QuickPak Professional DOS
routines, a null string may not be used to indicate the default drive.

Info$ is a string already containing at least 512 characters or spaces
that receives the sector contents, and Sector% indicates the sector
number to read.

Comments:

To accommodate very large hard disks, the sector number is given
as an "unsigned" value. For sectors between O and 32767, simply
assign the number to Sector% and call ReadSect. But for sectors
beyond the normal range of an integer variable, you must instead
use a long integer. In fact, a long integer variable may be used in
either case. To specify a long integer constant, simply append a
trailing ampersand (&) to the value, as shown below:

CALL ReadSect(Drive$, Info$, 43800&)

Errors may be detected with the QuickPak Professional DOSError
and WhichError functions. Notice that ReadSect is not intended for
use with network drives.

A complete sector reading utility is provided in the file
READSECT.BAS, and the program DEMOSECT.BAS, shows how
it may be called.

3-96 Crescent Software, Inc.

QuickPak Professional Chapter 3

ReadTest
assembler function contained in PRO.LIB

Purpose:

ReadTest will report whether a specified disk drive is ready for
reading.

Syntax:

Okay= ReadTest%(Drive$)

Where:

Drive$ is either an upper or lower case letter that represents the
disk drive to check, or a null string to indicate the current default
drive. Okay is then assigned -1 if the drive is ready, or O if it is not.

Comments:

Because ReadTest has been designed as a function, it must be
declared before it may be used.

ReadTest does not check to see if a valid drive letter has been
specified. It only tests to see that a disk is in the drive and the door
is closed. If you also need to determine whether the drive letter is
valid, you should first use the GoodDrive function.

A complete example showing ReadTest and its companion routine
WriteTest is given in the RWTEST.BAS demonstration program.

Crescent Software, Inc. 3-97

I

Chapter 3 QuickPak Professional

Removable
assembler function contained in PRO. LIB

Purpose:

Removable reports if a given drive's media is removable (a floppy
drive).

Syntax:

Floppy= Removable%(Drive$)

Where:

Drive$ is a letter that specifies the drive to test, or a null string to
examine the current drive. Floppy then receives -1 if the drive is in
fact meant to hold a floppy disk, or zero if it is not.

Comments:

Because Removable has been designed as a function, it must be
declared before it may be used.

Drive$ may be upper or lower case, and only the first character is
considered. If Drive$ is null, the current default drive is tested.

Removable requires DOS 3.00 or later, and returns unpredictable
values with no other error if the DOS version is less than that.
Therefore, you should use DOSVer manually if there is a chance
the host PC is not using DOS version 3.00 or later.

The following complete example program shows Removable in
context:

3-98

DECLARE FUNCTION Removable%(Drive$)
IF Removable%(Drive$) THEN

PRINT Drive$; " is a removable floppy drive"
ELSE

PRINT Drive$; "is a hard disk or RAM disk or network drive"
END IF

Crescent Software, Inc.

QuickPak Professional Chapter 3

ScanFile
BASIC function contained in SCANFllE.BAS

Purpose:

ScanFile will quickly scan through a specified file looking for a
particular text string.

Syntax:

Found= ScanFile&(FileName$, Text$, Start&)

Where:

FileName$ is the file to be examined, Text$ is the text to find,
Start& is the starting offset at which to begin searching, and Found
receives the offset at which the text was located. Text$ may contain
any number of "?" wild cards, and searching is case insensitive.

If the text is not located, then Found will receive 0. If a disk error
occurs, or an invalid path, drive, or file name is given, Found
instead receives -1.

Comments:

ScanFile is written in BASIC, however the actual reading of the file
is performed by the QuickPak Professional binary file access
routines.

Even though ScanFile returns a -1 if an error occurs, the QuickPak
Professional DOSError and WhichError functions may also be
examined for errors.

ScanFile searches without regard to capitalization, but comments in
the source code to SCANFILE.BAS show how this may be
changed. Search for "Qlnstr2" to find where it is used, and replace
that with Qlnstr.

The position in the file that is returned by ScanFile is based at one.
That is, if a match is found at the very first byte in the file,
ScanFile will return 1, and not 0.

Crescent Software, Inc. 3-99

I

Chapter 3 QuickPak Professional

The starting offset parameter is used to let you continue a search, or
examine only a portion of a file. For example, the first time
ScanFile is used, Start& should be set to 1. If a match is found but
it is not the correct one, you would invoke ScanFile a second time
with the starting offset set to the offset it first returned.

Calling ScanFile successively this way is amply illustrated by the
DEMOS CAN .BAS example program.

3-100 Crescent Software, Inc.

QuickPak Professional Chapter 3

SearchPath
BASIC function contained in SRCHPATH.BAS

Purpose:

SearchPath$ accepts the name of any file and returns its fully
qualified name by searching the DOS PA TH.

Syntax:

PathName$ = SearchPath$(FileName$)

Where:

FileName$ is a file name such as "FORMAT.COM" and
PathName$ receives the program's full path name, for example
"\DOS\FORMAT.COM". If a drive letter is included in the user's
PATH setting that will be returned as well.

Comments:

Because SearchPath has been designed as a function, it must be
declared before it may be used.

SearchPath begins by looking in the current directory for the named
file, and if not found it then examines all of the directories listed in
the DOS PATH. If no file extension is given, then as SearchPath
searches each directory it also looks for . COM, .EXE, and .BAT in
that order. This is the same search order that DOS uses when
running executable programs.

See LOADEXEC.BAS for a demonstration using SearchPath in
context.

Crescent Software, Inc. 3-101

I

Chapter 3 QuickPak Professional

SetAttr
assembler subroutine contained in PRO.LIB

Purpose:

SetAttr sets the attribute byte for a specified file.

Syntax:

CALL SetAttr(FileName$, Attribute%)

Where:

FileName$ is the file being modified, and Attribute% is bit coded
with the attributes to set it to.

Comments:

Every file has an attribute that is assigned at the time it is created.
The attribute information is kept in a disk's directory, along with
each file's name, date, and time.

The table below shows some common values for the Attribute%
variable:

1 Read-Only
2 Hidden

32 Archive
0 turns off all attributes

A complete description of file attributes is given in the section that
describes the GetAttr function. Also, a working example of setting a
file's attributes is contained in the SETATTR.BAS demonstration
program.

3-102 Crescent Software, Inc.

QuickPak Professional Chapter 3

SetCmd
assembler subroutine contained in PRO.LIB

Purpose:

SetCmd lets you establish a new COMMAND$ argument for a
program that is subsequently run or chained to.

Syntax:

CALL SetCmd(NewColffiland$}

Where:

NewCommand$ is the string the next program will receive as
COMMAND$.

Comments:

SetCmd requires DOS 3.0 or later, and you should use the DOSVer
function to check the DOS version because SetCmd does not return
an error.

The length of the new COMMAND$ passed to SetCmd must be 125
characters or less; however, leading blanks will be trimmed and not
included in that count.

Crescent Software, Inc. 3-103

Chapter 3 QuickPak Professional

SetDrive
assembler subroutine contained in PRO.LIB

Purpose:

SetDrive allows changing the current default drive.

Syntax:

CALL SetDrive(Drive$)

Where:

Drive$ is either an upper or lower case letter of the drive to be
made the current default.

Comments:

SetDrive is extremely simple to set up and call. Besides using a
string variable to specify the new drive letter, you may also give it a
string literal:

CALL SetDrive("A")

or

CALL SetDrive("b")

You may use the QuickPak Professional DOSError and WhichError
functions to determine if the new drive was valid.

3-104 Crescent Software, Inc.

QuickPak Professional Chapter 3

SetE:rror
assembler subroutine contained in PRO.LIB

Purpose:

SetError allows a BASIC program to set or clear the DOSError and
WhichError functions.

Syntax:

CALL SetError(ErrCode%)

Where:

ErrCode % is either zero to clear DOSError and WhichError, or an
error value to place into WhichError. If ErrCode% is not zero, then
DOSError will be set to -1.

Comments:

You probably will not need to set the DOSError and WhichError
function values in your programs. However, this capability can be
important when you are creating your own DOS services in BASIC.
For example, the QuickPak Professional ScanFile function uses
SetError to indicate whether the file was read successfully.

Crescent Software, Inc. 3-105

I

Chapter 3 QuickPak Professional

SetLevel
assembler subroutine contained in PRO.LIB

Purpose:

SetLevel allows a QuickBASIC program to set the DOS error level.

Syntax:

CALL SetLevel(ErrValue%): END

Where:

ErrValue% is a value between 1 and 255.

Comments:

Most utility programs use the DOS error level to indicate to a batch
file if they terminated successfully. This may then be tested in the
batch file with "IF ERRORLEVEL x action", where x is the error
level, and action is what to do.

SetLevel has no meaningful effect within the QuickBASIC editing
environment - you must compile your program to an .EXE file
before it will work. Also, because SetLevel installs itself
temporarily as a TSR routine that intercepts each DOS interrupt, we
suggest that you not call it until you are ready to end your program.

3-106 Crescent Software, Inc.

QuickPak Professional Chapter 3

ShareThere
assembler function contained in PRO.LIB

Purpose:

ShareThere reports if SHARE is installed in the host PC.

Syntax:

ShareisActive = ShareThere%

Where:

SharelsActive receives -1 if SHARE is currently installed, or zero if
it is not.

Comments:

Because ShareThere has been designed as a function, it must be
declared before it may be used.

ShareThere is useful if you are writing a network program, because
BASIC will report an error if SHARE (or its equivalent in the
network software) is not available when a file is opened for shared
access.

A typical usage of ShareThere is as follows:

DECLARE FUNCTION ShareThere% {)
IF ShareThere% THEN

OPEN "ACCOUNTS.DAT" FOR RANDOM SHARED AS #1 LEN= RecLength%
ELSE

PRINT "Please quit and run the SHARE program"
END

END IF

As with many of the other QuickPak Professional functions,
ShareThere uses -1 to indicate True and O for False, so you can use
BASIC's NOT:

IF NOT ShareThere% THEN ...

Crescent Software, Inc. 3-107

I

Chapter 3 QuickPak Professional

SplitName
assembler subroutine contained in PRO.LIB

Purpose:

SplitName parses out the components in a file name, and returns the
drive letter, path name, file name, and extension as separate items.

Syntax:

CALL SplitName(WorkName$, Drive$, Path$, FileName$, Extension$)

Where:

WorkName$ is a complete file name such as
"C: \MYPATH\ YOURPATH\MYFILE.EXT". SplitName then
returns Drive$ as "C:", Path$ as "\MYPATH\YOURPATH\",
FileName$ as "MYFILE", and Extension$ as ".EXT".

Comments:

If there is no drive, the current default is used. And if no path is
specified, the current directory is returned. This lets you know
everything about the file in one operation.

For assembly language buffs, notice that the same exact assembler
source code is used for both the near and far string versions. This
is achieved by calling BASIC internal routines exclusively.

SPLITNAM.BAS provides a demonstration program that shows
how SplitName works.

3-108 Crescent Software, Inc.

QuickPak Professional Chapter3

Unique
BASIC function contained in UNIQUE.BAS

Purpose:

Unique will return a file name that does not already exist on the
default drive in the current directory.

Syntax:

FileName$ = Unique$(Path$)

Where:

FileName$ receives a unique file name. Path$ is the directory path
where a unique name is to be found. If Path$ is null, the current
directory is used.

Comments:

Because Unique has been designed as a function, it must be
declared before it may be used.

There are several situations where a program will need to create a
temporary file with a unique name. For example, you might want to
pass information to a subsequently run program, or perhaps save the
intermediate passes of a multiple pass file sort.

Beginning with DOS 3, a similar system service was introduced to
create a unique file name. Unique creates a file name based on the
system time kept in low memory, and works with all versions of
DOS 2.x and later.

The Path$ argument lets you ensure that the file name returned does
not already exist in the specified directory.

Crescent Software, Inc. 3-109

I

Chapter 3 QuickPak Professional

UnLockFile
assembler subroutine contained in PRO.LIB

Purpose:

UnLock.File will unlock all or a portion of a network file in the
same way that BASIC's UNLOCK will, but without needing ON
ERROR.

Syntax:

CALL UnLockFile(Handle%, Offset&, Length&)

Where:

Handle% is the handle that DOS assigned when the file was first
opened, Offset& is the starting offset into the file where the
unlocking is to begin, and Length& is the number of bytes to
unlock.

Comments:

Only two errors are likely when using UnLockFile, and these may
be determined by examining the DOSError and WhichError
functions.

To use UnLock.File, you must provide a file handle, as well as the
range of bytes in the file. These are easily determined based on the
record number to be unlocked, and the length of each record. Long
integer values are used because you may also need to unlock a large
range of records, or even the entire file. Of course, the values to
unlock a large file cannot be represented by a conventional integer
variable. Notice that if the file is successfully unlocked, it will not
be necessary to do it again in BASIC.

Please see the comments and warnings that accompany the
description for Lock.File.

See the LOCKFILE.BAS demonstration program for an example of
how to calculate the Offset& and Length& parameters.

3-110 Crescent Software, Inc.

QuickPak Professional Chapter 3

Valid
assembler function contained in PRO.LIB

Purpose:

Valid examines a string to see if it could be a valid file name.

Syntax:

Okay= Valid%(FileName$)

Where:

FileN ame$ contains the name of a file, and may optionally include a
drive letter and colon, as well as a path name. If the name is legal
according to the rules of DOS, Okay will receive -1. Otherwise
Okay will be set to zero.

Comments:

Because Valid has been designed as a function, it must be declared
before it may be used.

Valid provides a very quick way to determine if a DOS file name is
syntactically correct. However, it does not check to see if the
named file, drive, and path actually exist. Rather, it simply reports
if the name could be valid.

Notice that Valid considers blank spaces to be illegal, so you should
use LTRIM$ and RTRIM$ if there is any possibility that the name
may contain leading or trailing blanks:

Okay= Valid%(LTRIM$(RTRIM$(FileName$)))

Also notice that Valid follows the rules of DOS exactly. That is, a
filename may be longer than eight characters, and an extension may
be longer than three. In those cases, DOS will truncate the excess.

Crescent Software, Inc. 3-111

I

Chapter 3 QuickPak Professional

WhichError
assembler function contained in PRO.LIB

Purpose:

WhichError reports which error if any occurred during the last call
to a QuickPak: Professional DOS routine.

Syntax:

IF DOSError% THEN PRINT WhichError% "occurred"

Where:

WhichError% returns O if there was no error, or an error code if
there was.

Comments:

Because WhichError has been designed as a function, it must be
declared before it may be used.

All of the QuickPak Professional routines assign a value to the
DOSError and WhichError functions to indicate their success or
failure. Rather than requiring you to set up a separate error
handling procedure and use ON ERROR, you can simply query
these functions after performing any QuickPak Professional DOS
operation. WhichError is discussed in the section entitled
"Eliminating ON ERROR".

The table on the following page shows all of the possible DOS
errors and the corresponding numbers that WhichError returns.

Also see the complimentary function DOSError.

3-112 Crescent Software, Inc.

QuickPak Professional Chapter 3

Table 3-3
QuickPak Professional Error Codes

Err Descri~tion TJ'.l~ical Situation
7 Out of memory FastLoadlnt

I
14 Out of string space FastLoadlnt/FastSave
25 Device fault Disk write error
27 Out of paper Printer error
52 Invalid file handle File access
53 File not found File access
57 Device 1/0 error Disk not formatted
58 File/Path already exists NameFile or NameDir
61 Disk is full File writes, opens, etc.
62 Input past end of file File reads
64 Bad file name Filename null or too long
67 Directory is full FCreate, MakeDir
68 Device unavailable Unknown drive
70 Permission denied Disk write-protected
71 Disk not ready Drive door open
72 Disk media error Bad disk sector
73 Advanced feature not LockFile with DOS 2.x

available
74 Rename across disks NameFile
75 Access denied Read-only files
76 Path not found Invalid drive or path
77 Invalid drive spec Disklnfo, SetDrive
78 Too many handles FOpen
79 Bad FAT image WriteSect to FAT
80 Invalid time data FStamp
81 Invalid date data FStamp
82 Invalid parameter File handles, etc.
83 Buffer too small LineCount
84 Current directory has NameDir

been renamed
85 Lock conflict LockFile
86 Sharing conflict FOpenAll
87 Read-only conflict FCreate
100 Insufficient number of String Restore

elements
127 Undefined error

Crescent Software, Inc. 3-113

Chapter 3 QuickPak Professional

WriteSect
assembler subroutine contained in PRO.LIB

Purpose:

WriteSect will write new contents to any disk sector from either a
conventional or fixed-length string.

Syntax:
CALL WriteSect(Drive$, Info$, Sector%)

Where:

Drive$ is an upper or lower case letter specifying the disk drive to
write to. Unlike most of the other QuickPak Professional DOS
routines, a null string may not be used to indicate the default drive.

Info$ is a string that contains the new sector contents to be written
(512 bytes), and Sector% indicates the sector number.

Comments:

WARNING:

Like ReadSect, this is a very powerful routine-in fact, perhaps a
bit too powerful! It will write directly to any disk sector you
specify, filling it with the contents of the stated string.

Be warned, WriteSect has the potential to totally devastate a disk.
Please be careful! If you aren't sure how to use WriteSect, then you
have no business fooling around with it. We have thoroughly tested
this routine, however you are on your own. If you trash your hard
disk, forget where you got this program.

To accommodate very large hard disks, the sector number is given
as an "unsigned" value. For sectors between O and 32767, simply
assign the number to Sector% and call WriteSect. But for sectors
beyond the normal range of an integer variable (up to 65,535), you
must instead use a long integer. In fact, a long integer variable may
be used in either case.

3-114 Crescent Software, Inc.

QuickPak Professional

To specify a long integer constant, simply append a trailing
ampersand (&) to the value, as shown below:

CALL WritSect(Drive$, Info$, 43800&)

Chapter 3

Errors may be detected with the QuickPak Professional DOSError
and WhichError functions. Notice that WriteSect is not intended for
use with network drives.

Crescent Software, Inc. 3-115

I

I

Chapter 3 QuickPak Professional

WriteSect2
assembler subroutine contained in PRO.LIB

Purpose:

WriteSect2 will write new contents to one or more disk sectors from
either a conventional or fixed-length string.

Syntax:

Call WriteSect2(Drive$, Info$, Sector%)

Where:

Drive$ is an upper or lower case letter specifying the disk drive to
write to. Unlike most of the QuickPak Professional DOS routines, a
null string may not be used to specify the default drive.

Info$ is a string that contains the new sector contents, and Sector%
indicates the starting sector number. A long integer may be used to
specify sectors numbered higher than 32767.

Comments:

WriteSect2 is similar to WriteSect, except it uses the length of Info$
to determine how many sectors to write at one time. For example, if
Info$ is 512 characters long, one sector will be written. Likewise,
filling Info$ with 2048 bytes tells WriteSect to write four sectors.
We created this special version of W riteSect for our own use in a
fast disk copying program, and thought you might find it useful for
a similar purpose.

Please see the warnings and comments that accompany the original
WriteSect routine.

3-116 Crescent Software, Inc.

QuickPak Professional Chapter 3

WriteTest
assembler function contained in PRO.LIB

Purpose:

Write Test will report whether a specified disk drive is ready for
writing.

Syntax:

Okay= WriteTest%(Drive$)

Where:

Drive$ is either an upper or lower case letter that represents the
disk drive to check, or a null string to indicate the current default
drive. Okay is then assigned -1 if the drive is ready,
or O if it is not.

Comments:

Because Write Test has been designed as a function, it must be
declared before it may be used.

WriteTest does not check to see if a valid drive letter has been
specified. It only tests if a disk is in the drive, is not
write-protected, and the drive door is closed. If you also need to
determine whether the drive letter is valid, you should first use the
GoodDrive function.

WriteTest will also not detect if a disk is merely full. If you need to
insure against insufficient disk space, you should use the DiskRoom
function after WriteTest.

Notice that WriteTest creates a temporary file named
"LIKE-WOW.MAN" on the disk being tested. In the unlikely event
that a file with the same name is already present, it will be
overwritten in the process.

A complete example showing WriteTest and its companion routine
ReadTest in context is given in the RWTEST.BAS demonstration
program.

Crescent Software, Inc. 3-117

I

Functions _
Chapter4 I

I

QuickPak Professional Chapter4

Bin2Num
assembler function contained in PRO.LIB

Purpose:

Bin2Num accepts a binary number in the form of a string, and
returns an equivalent value.

Syntax:

Number= Bin2Num%(Binary$)

Where:

Binary$ is a string containing only the characters "1" and "O", and
Number receives its value.

Comments:

Because Bin2Num is designed as a function, it must be declared
before it may be used.

Bin2Num is designed as an integer function, therefore the values it
returns will be considered to be "signed". That is, BASIC always
considers integer values larger than 32767 as negative numbers.

To convert a signed number to its equivalent unsigned value, simply
add 65536 as shown below:

Value&= Bin2Num%("1101ll1011000101")
IF Value& <O THEN Value&= Value&+ 65536

Also see the related functions Num2Bin and Num2Bin2.

Crescent Software, Inc. 4-1

I

Chapter4 QuickPak Professional

C2F
BASIC function contained in FNOTHER.BAS

Purpose:

C2F will convert a Celsius temperature to its Fahrenheit equivalent.

Syntax:
FTempl = C2F!(CTempl)

Where:

CTemp! is a valid Celsius temperature, and FTemp! receives an
equivalent in degrees Fahrenheit.

Comments:

4-2

Also see the companion function F2C ! that converts from
Fahrenheit to Celsius.

Crescent Software, Inc.

QuickPak Professional Chapter 4

Delimit
BASIC function contained in FNOTHER.BAS

Purpose:

Delimit counts the number of delimiters in a string, by matching
against a second string that contains a table of valid delimiters.

Syntax:

Count= Delimit%{Work$, Table$)

Where:

Work$ is a string such as the current DOS PATH or COMMAND$,
Table$ contains a list of acceptable delimiters, and Count receives
the total number of matching delimiters found in Work$.

Comments:

Delimit is intended to be used in conjunction with the Parse
function, which extracts individual items from a list and places them
into an array. Delimit merely counts the number of delimiters in a
string, based on a table you provide.

For example, to isolate the various components of a DOS PATH
(obtained with BASIC's ENVIRON$ command), you would use the
semi-colon(;) as a delimiter. However, Delimit will also accept a
table of possible delimiters, and report how many are contained in
the string being examined.

If you need to isolate all of the possible COMMAND$ switches a
user gave when starting your program, you would probably include
several delimiting characters, as shown below.

Count= Delimit%(CDMMAND$, "/,-+ ")

An example of obtaining each item in the DOS PATH is given in
the demonstration portion of FNOTHER.BAS, along with
comments showing how to parse COMMAND$.

Crescent Software, Inc. 4-3

I

I

Chapter4 QuickPak Professional

Eval
BASIC function contained in FNOTHER.BAS

Purpose:

Eval will return the value of a string like BASIC's VAL function,
but without regard to dollar signs, commas, or any other
punctuation.

Syntax:

Value= Eval#(Number$)

Where:

Number$ contains a string of digits and possibly punctuation such
as commas and dollar signs, and Value receives its actual value.

Comments:

4-4

Eval simply steps through all of the characters in a string discarding
those that are not valid digits. However, it does employ some
intelligence in that only one minus sign or decimal point will be
recognized.

Crescent Software, Inc.

QuickPak Professional Chapter4

ExpandTab
BASIC function contained in FNOTHER.BAS

Purpose:

ExpandTab accepts an incoming text string that contains embedded
CHR$(9) tab characters, and replaces them with an appropriate
number of CHR$(32) spaces.

Syntax:

Expanded$= ExpandTab$(0riginal$, NumSpaces%)

Where:

Original$ is the original string that contains Tabs, NumSpaces %
indicates where the tab stops are located, and Expanded$ receives
the expanded result.

Comments:

Rather than simply replace each tab character with a specified
number of spaces, ExpandTab takes into account the physical
position of the tabs within the string.

The true purpose of a tab is to position the cursor (or a print head)
to the next tab position. Therefore, the number of blanks that are
being substituted will vary depending on the location of the tab
within the string.

ExpandTab takes this into account as it expands the string. Further,
you may specify at what intervals the tab stops are to be located.
However, tab stops are usually placed at every eighth position.

Also see the companion function ShrinkTab.

Crescent Software, Inc. 4-5

I

I

Chapter 4 QuickPak Professional

F2C
BASIC function contained in FNOTHER.BAS

Purpose:

F2C will convert a Fahrenheit temperature to its Centigrade
equivalent.

Syntax:

CTemp! = F2C!(FTemp!}

Where:

FTemp! is a valid Fahrenheit temperature, and CTemp! receives an
equivalent in degrees Centigrade.

Comments:

4-6

Also see the companion function C2F! that converts from
Centigrade to Fahrenheit.

Crescent Software, Inc.

QuickPak Professional Chapter 4

LastFirst
BASIC function contained in FNOTHER.BAS

Purpose:

LastFirst will reverse the position of a first name and last name in a
string such that the last name comes before the first.

Syntax:

NewName$ = LastFirst$(0ldName$)

Where:

OldName$ is in the form "John Smith", and New Name$ is
converted to "Smith, John".

Comments:

Only one possible problem you may encounter when using LastFirst
is when the name contains a suffix such as "Jr.". We could have
trapped for that case, but that still wouldn't prevent a "Sr." or
"Esq." from slipping through. Further, testing many cases would
slow down the function.

Consider this one as a foundation, and simply add any code you feel
is necessary to handle the types of names you anticipate. However,
LastFirst will correctly handle three word names such as "John A.
Smith" or "John Anthony Smith".

Also see the companion function LastLast that places a last name
after the first.

Crescent Software, Inc. 4-7

I

Chapter4 QuickPak Professional

LastLast
BASIC function contained in FNOTHER.BAS

Purpose:

LastLast will reverse the position of a first name and last name in a
string such that the last name comes after the first.

Syntax:

NewName$ = Lastlast$(0ldName$)

Where:

OldName$ is in the form "Smith, John", and New Name$ is then
assigned "John Smith".

Comments:

4-8

Also see the companion function LastFirst that places a last name
before the first.

Crescent Software, Inc.

QuickPak Professional Chapter4

Num2BinandNum2Bin2
assembler functions contained in PRO.LIB

Purpose:

Num2Bin will convert a number into an equivalent binary string
with a fixed length of 16 digits. Num2Bin2 performs the same
function, but returns only as many digits as required to represent
the number.

Syntax:

Binary$= Num2Bin$(Number%)

Where:

Number% is an integer value, and Binary$ receives an equivalent
string containing only ones and zeros.

Comments:

Because Num2Bin and Num2Bin2 are designed as functions, they
must be declared before they may be used.

Num2Bin and Num2Bin2 are designed as integer functions,
therefore the values they accept will be considered to be "signed".
That is, BASIC always considers integer values larger than 32767
as negative numbers.

Also see the complementary function Bin2Num.

Crescent Software, Inc. 4-9

I

Chapter4 QuickPak Professional

Pad
BASIC function contained in FNOTHER.BAS

Purpose:

Pad will add leading zeros to a number, padding it to a specified
number of digits.

Syntax:

Padded$= Pad$(Number!, Digits%)

Where:

Number! is any single precision value, Digits% specifies how many
total digits are to be used, and Padded$ receives the result. If the
number of digits is too few to accommodate the number, Pad$ will
append a leading percent sign.

Comments:

Because it has been designed as a function, Pad$ must be declared
before it may be used.

Pad$ is designed to expect a single precision incoming value, but it
may be easily changed to either long integer, single, or double
precision if you prefer.

4-10 Crescent Software, Inc.

QuickPak Professional Chapter 4

Parse
BASIC subprogram contained in FNOTHER.BAS

Purpose:

Parse will extract individual components from a single string, and
place each into a separate element of a string array.

Syntax:

CALL Parse(Work$, Delim$, Array$())

Where:

Work$ contains the string to be parsed, Delim$ holds a list of the
delimiters that separate each component, and Array$0 receives each
item.

Comments:

Parse is intended primarily to be used for isolating the individual
components of COMMAND$. It may also be used to determine the
various directories in a PA TH, or anywhere that a single string
contains multiple items. Even though Parse is actually a called
subprogram, it seems most appropriate to place it within the file of
related functions.

It is up to you to first dimension the string array that will receive
the items. This would be done with the complementary function
Delimit.

Though Parse could have been designed to dimension the array, that
would require the array to be Shared rather than passed as an
argument. BASIC subprograms cannot re-dimension an array that
has been passed as an incoming parameter, and this is a better
approach.

Crescent Software, Inc. 4-11

I

I

Chapter4 QuickPak Professional

The example below shows how to combine Parse and Delimit to
isolate command line switches such as "IT", "-U", ",3 ", and so forth.

Work$= COMMAND$
Delim$ = "-, ;_" 'some corrmon delimiters

'(last one is a blank)
X = Delimit%(Work$, Delim$) + 1 'see how many matching

'delimiters there are
REDIM Array$(X) '+1 is needed to account

'for the last item
Parse Work$, Delim$, Array$()
FOR X = 1 TO X

PRINT Array$(X)
NEXT

'Parse fills the array
'print each item

Because Delimit returns the number of delimiters rather than the
actual number of items, the string array must be dimensioned to one
more than the value returned by Delimit.

4-12 Crescent Software, Inc.

QuickPak Professional Chapter 4

ParseStr
BASIC function contained in FNOTHER.BAS

Purpose:

ParseStr accepts an incoming string that contains numbers separated
by commas, and returns a new string consisting of the equivalent
ASCII characters.

Syntax:

Code$= ParseStr$(List$)

Where:

List$ contains a list of numbers in the form:

"27, 69, 27, 72"

or

"27,69,27,72"

and Code$ receives the equivalent ASCII characters:

CHR$(27) + CHR$(69) + CHR$(27) + CHR$(72)

Comments:

ParseStr$ is primarily intended to allow you to accept a string of
printer turn-on or turn-off codes that were entered by a user, and
quickly convert them to the appropriate string for sending to a
printer.

Also see the companion routine U nParseStr.

Crescent Software, Inc. 4-13

I

Chapter4 QuickPak Professional

QPHex
assembler function contained in PRO.LIB

Purpose:

QPHex is a fast replacement for BASIC's HEX$ function, and it
also returns a string padded to a specified number of digits.

Syntax:

HexNumber$ = QPHex$(Value, NumDigits%)

Where:

Value is either an integer or long integer value, and NumDigits % is
the number of digits QPHex is to return.

Comments:

Because QPHex has been designed as a function, it must be
declared before it may be used.

When declaring QPHex, you should use the AS ANY clause, which
allows you to pass either integer or long integer numbers when you
use it:

DECLARE FUNCTION QPHex$(Value AS ANY, NumDigits%)

If the number of digits is between 1 and 4, then QPHex assumes the
incoming value is a two-byte integer. Specifying NumDigits % as 5
through 8 instead tells QPHex that the number is a four-byte long
integer. The output for two sample uses is shown below:

4-14

PRINT QPHex$(12, 2)
PRINT QPHex$(123456&, 8)

'this prints "QC"
'this prints "0001E240"

Crescent Software, Inc.

QuickPak Professional Chapter 4

Rand
BASIC function contained in FNOTHER.BAS

Purpose:

Rand returns a random number between the specified lower and
upper bounds.

Syntax:

R = Rand!(Lower!, Upper!)

Where:

Lower! is the lowest acceptable number that should be returned,
Upper! is the highest, and R receives the random result.

Comments:

One of the problems with using random numbers in a BASIC
program is that the numbers aren't really random! Every time the
RND0 function is invoked, the exact same sequence of numbers is
generated.

To overcome this behavior, BASIC allows a program to "seed" the
random number generator with a new starting value. One good way
to insure that a new sequence is created each time a program runs is
to use TIMER as a seed. This is the approach we took in writing
Rand.

Crescent Software, Inc. 4-15

Chapter 4 QuickPak Professional

ShrinkTab
BASIC function contained in FNOTHER.BAS

Purpose:

ShrinkTab reduces the length of a string by replacing groups of
blank spaces with CHR$(9) tab characters.

Syntax:

Small$= ShrinkTab$(0riginal$, NumSpaces%)

Where:

Original$ is the original string that contains groups of blank spaces,
NumSpaces % indicates where the tab characters are to be placed,
and Small$ receives the new string that has been reduced in length.

Comments:

Rather than simply replace each group of spaces with a tab
character, ShrinkTab takes into account the physical position at
which the tabs should be placed within the string.

The true purpose of a tab is to position the cursor (or a print head)
at the next tab location. Therefore, the placement of each tab that is
being assigned will vary, depending on the location of the original
blanks.

ShrinkTab takes this into account as it reduces the string. Further,
you may specify at what intervals the tab stops are to be located.
However, tab stops are usually placed at every eighth position.

Also see the companion function ExpandTab.

4-16 Crescent Software, Inc.

QuickPak Professional Chapter 4

Signed
BASIC function contained in FNOTHER.BAS

Purpose:

Signed talces an incoming unsigned long integer value, and returns it
in a signed form.

Syntax:

S = Signed%(US&)

Where:

US& is a number within the range O to 65535, and S receives a
signed equivalent.

Comments:

The difference between a signed integer value and an unsigned one
is really more a matter of semantics than anything else. In either
case, there are 65536 values being considered.

When considered on an unsigned basis, integer numbers will range
between zero and 65535. But when the same numbers are treated as
signed, they instead range from -32768 to 32767. For example, -1
is the same as 65535, -2 equals 65534, and so forth. By definition,
a signed number is negative if-when considered in binary-its most
significant bit is set.

Also see the companion function UnSigned.

Crescent Software, Inc. 4-17

I

Chapter 4 QuickPak Professional

UnParseStr
BASIC function contained in FNOTHER.BAS

Purpose:

UnParseStr accepts an incoming string that contains ASCII
characters, and returns the equivalent numeric values separated by
commas.

Syntax:
List$= UnParseStr$(Code$)

Where:

Code$ contains a string of ASCII characters in the form:

CHR$(27) + CHR$(69) + CHR$(27) + CHR$(72)

and List$ receives a list of equivalent numbers:

"27,69,27,72"

Comments:

UnParseStr$ allows editing a string of printer turn-on or turn-off
codes that had previously been converted using the companion
ParseStr function.

Comments in the source code show how to have UnParseStr place
an extra space between the characters:

"27, 69, 27, 72"

Also see the companion routine ParseStr

4-18 Crescent Software, Inc.

QuickPak Professional Chapter4

UnSigned
BASIC function contained in FNOTHER.BAS

Purpose:

UnSigned takes an incoming signed integer value, and returns it in
an unsigned form.

Syntax:

US= UnSigned&(S%)

Where:

S% is a number within the range -32768 to 32767, and US receives
an unsigned equivalent.

Comments:

The difference between signed and unsigned numbers is discussed
in the description of the Signed function.

Crescent Software, Inc. 4-19

I

I

Chapter 4 QuickPak Professional

Mathematical functions
BASIC functions contained in FNSPREAD.BAS

QPACOS

Purpose:

Arc cosine of x (rad.) -1 < = x < = + 1

Formula:

for ABS(x#) < > 1

QPACOS#(x#) = pi / 2 - ATN(x# / SQR(l - x# * x#))

otherwise, if x = 1

QPACOS#(x#) = 0

else:

QPACOS#(x#) = pi

Equivalent spreadsheet function:

@ACOS(x)

4-20 Crescent Software, Inc.

QuickPak Prqfessional

QPASIN

Purpose:

Arc sine of x (rad.) -1 < = x < = +1

Formula:

for ABS(x#) < > 1

QPASIN#(x#) = ATN(x# / SQR(l - x# * x#))

otherwise

QPASIN#(x#) = SGN(x#) * pi / 2

Equivalent spreadsheet function:

@ASIN(x)

QPATAN2

Purpose:

4-quadrant arc tangent of y/x (rad.) 0 < x < 1

Formula:

for X = 0

QPTAN2# = SGN(y#) * pi / 2

for X > 0

QPATAN2#(x#, y#) = ATN(y# / x#)

for x < 0 and y = > 0

QPATAN2#(x#, y#) =pi+ ATN(y# / x#)

for x < 0 and y < = 0

QPATAN2#(x#, y#) =-pi+ ATN(y# / x#)

Crescent Software, Inc.

Chapter 4

I

4-21

I

Chapter4

Equivalent spreadsheet function:

@ATAN2(x, y)

QPLOG10

Purpose:

Log of x base 10

Formula:

QPLOGlO#(x#) = LOG(x#) / LOG(lO)

Equivalent spreadsheet formula:

@LOG(x)

QPROUND

Purpose:

x rounded to n decimal places

Syntax:

Number$= QPROUND$(Number#, Places%)

Equivalent spreadsheet function:

@ROUND(x, n)

4-22

QuickPak Professional

Crescent Software, Inc.

QuickPak Professional Chapter4

Financial functions
BASIC functions contained in FNSPREAD.BAS

Many financial functions involve annuities. An annuity is simply a
series of equal payments made at regular intervals of time. It is a
compound-interest situation with regular payments. When the
payments are made at the beginning of the payment period, the
annuity is called an "annuity due". When payment is due at the end
of the payment period it is an "ordinary annuity".

Where:

fv# =
pv# =
pmt# =
I! =
intr# =
term% =
prin# =
bal# =

future value
present value
payment per period
interest rate per period in percent
I!/100 (I)
number of periods
principal (same as pv#)
balloon payment (may be 0)

Several of the functions we have provided are not available even in
Lotus 123. These are identified with an "*".

Crescent Software, Inc. 4-23

I

Chapter 4 QuickPak Professional

Sinking fund annuities:

A sinking fund annuity is most easily described as a savings fund
designed to accumulate a predetermined amount of money by a
specified date.

QPFV - Future value of ordinary annuity (sinking fund)

Formula:

QPFV#(pmt#, intr#, term%)= pmt# * ((1 + intr#)A term% - 1) / intr#

Equivalent spreadsheet function:

@FV(pmt#, intr#, term%)

* QPFVN - Term (number of payments) of a sinking fund

Formula:

QPFVN#(fv#, pmt#, intr#) = LOG(fv# * intr# / pmt# + 1) /
LOG(l + intr#) -

* QPFVP - Payment amount of a sinking fund

Formula:

QPFVP#(fv#, intr#, term%)= fv# * intr# / ((1 + intr#)A term% - 1)

4-24 Crescent Software, Inc.

QuickPak Professional Chapter 4

Annuity due:

An example annuity due (future value) is the future value of a
savings account with equal deposits made at the beginning of each
period.

* QPFVD - Future value of annuity due

Formula:

QPFVD#(pmt#, intr#, term%) = pmt# * (1 + intr#) *
((1 + intr#)A term% - 1) / intr#

* QPFVND - Term (number of payments) of an annuity due/FV

Formula:

QPFVND#(fv#, pmt#, intr#) = LOG(fv# * intr# / pmt# + 1 + intr#) /
LOG(l + intr#) - 1 -

* QPFVPD - Payment amount of an annuity due/FV

Formula:

QPFVPD#(fv#, intr#, term#)= fv# / ((1 + intr#) / intr# *
(1 + intr#)A term% -1)

Crescent Software, Inc. 4-25

I

Chapter 4 QuickPak Professional

Ordinary annuity:

When a sum of money is to be repaid with interest in fixed
payments for a specified number of periods (such as with a home
mortgage), it is called an ordinary annuity. A balloon payment may
be associated with this type of annuity.

QPPMT - Loan payment (ordinary annuity)

Formula:

QPPMT#(pv#, intr#, term%, bal#} = (pv# - bal# * _
(l+intr#}A -term%)/ ((1 -(l+intr#)A -term%)/ intr#)

Equivalent spreadsheet function:

@PMT(pv#, intr#, term%)

QPPV - Present value of an ordinary annuity

Formula:

QPPV#(pmt#, intr#, term%, bal#) = pmt# * _
(1 - (1 + intr#}A -term%} / intr# + bal# * (1 + intr#}A -term%

Equivalent spreadsheet function:

@PV(pmt#, intr#, term%)

* QPPVN - Term (number of payments) of an ordinary annuity

Formula:

QPPVN#(pmt#, intr#, pv#, bal#) LOG((pmt# - intr# * bal#) / _
(pmt# - intr# * pv#}) / LOG(l + intr#}

4-26 Crescent Software, Inc.

QuickPak Professional Chapter 4

Annuity due relationships:

In order to find the present value of a lease which will involve fixed
payments at the beginning of each payment period, use these annuity
due relationships.

"' QPPMTD - Lease payment (annuity due)

Formula:

QPPMTD#(pv#, intr#, term%, bal#) =
(pv# - bal# * (1 + intr#)" -te;m%) / (1 + intr#) / _
((1 - (1 + intr#)" -term%)/ intr#)

* QPPVD - Present value of annuity due

Formula:

QPPVD#(pmt#, intr#, term%, bal#) =
pmt# * (l+intr#) * (1-(l+intr#)" -term%)/_

intr# + bal# * (l+intr#)" -term%

"' QPPVND - Term (number of payments) of an annuity due

Formula:

QPPVND#(pmt#, intr#, pv#, bal#) = _

LOG((pmt# * (1 + intr#) / intr# - bal#) / (pmt# * _
(1 + intr#) / intr# - pv#)) / LOG(l + intr#)

Crescent Software, Inc. 4-27

I

I

Chapter 4

Other compound interest relationships

QPCINT- Compounded interest

Purpose:

QuickPak Professional

To find the future value of a savings account drawing compound
interest.

Formula:
QPCINT#(pv#, intr#, term%) = pv# * (1 + intr#)' term%

QPCTERM-Compounded term of investment

Purpose:

To determine the number of compounding periods it will take an
investment to grow to a pre-determined value.

Formula:

QPCTERM#(pv#, fv#, intr#) = LOG(fv# / pv#) / LOG(l + intr#)

Equivalent spreadsheet function:

@CTERM(intr#, fv#, pv#)

Note: Interest Rate (intr#) must be in decimal form. For example,
the monthly rate of 10% per year is (10 / 100) / 12
or .008333.

4-28 Crescent Software, Inc.

QuickPak Professional

QPIRR - Internal rate of return

Usage:
QPIRR#(intr#, Array#()}

Chapter4

This function is seeded by giving it an initial IRR rate (guess). The
algorithm first brackets the correct IRR and then converges on the
final IRR by a halving method. Convergence ends when a given
degree of accuracy is reached.

Equivalent spreadsheet function:

@IRR(guess#, list)

QPNPV - Net present value of future cash flows

Usage:

QPNPV#(intr#, Array#()}

Note: If the initial flow is not an outflow, enter zero as the first
value in Array#O. This will give the PV of the dollar flow.

Equivalent spreadsheet function:

@NPV(intr#, list)

QPRATE-Rate of investment

Purpose:

To obtain the periodic interest rate required for an investment to
grow to a pre-determined value in a specified time.

Formula:

QPRATE#(pv#, fv#, term%) = (fv# / pv#}~ (1 / term%) - 1

Equivalent spreadsheet function:

@RATE(fv#, pv#, term%)

Crescent Software, Inc. 4-29

I

I

Chapter 4 QuickPak Professional

Depreciation:
BASIC functions for depreciation calculation

The IRS allows depreciation of various assets using some of the
methods listed below (depending on the type and life of the asset).

Note: In all cases, year must be greater than or equal to 1 and less
than or equal to the depreciable life of the asset.

QPDDB - Double declining balance depreciation

Formula:

QPDDB#(cost#, sal#, life%, per%, m!) =
m! *cost#/ life%· per%* (life%~ 2)· (per% - 1)

Where:

"m" is the depreciation multiplier, i.e.

m = 2-Double Declining Balance
m = 1.5-150% Declining Balance
m = 1-Simple Declining Balance

Note: Adjustments are made to the formula within the function to
insure that the total depreciation does not exceed total cost less
salvage value.

Equivalent spreadsheet function:

@DDB(cost#, salvage#, life%, period%)

4-30 Crescent Software, Inc.

QuickPak Professional

QPSLN - Straight-line depreciation

Formula:

QPSLN#(cost#, sal#, life%) = (cost# - sal#) / life%

Equivalent spreadsheet function:

@SLN(cost#, salvage#, life%)

QPSYD - Sum-of-years'-digits depreciation

Formula:

QPSYD#(cost#, sal#, life%, per%) = (cost# - sal#) *
(life% - per%+ 1) / (life%* {life%+ 1) / 2)-

Equivalent spreadsheet function:

@SYD(cost#, salvage#, life%, period%)

Crescent Software, Inc.

Chapter 4

I

4-31

I

Chapter 4 QuickPak Professional

Statistical functions
BASIC functions contained in FNSPREAD.BAS

QPAVG - returns the average of the values in an array

Usage:

Average= QPAVG#(Array#())

Formula:

QPAVG#(Array#()) = QPSUM#(Array#()) / QPCOUNT%(Array#())

Equivalent spreadsheet function:

@AVG(list)

QPCOUNT - returns the number of entries in an array

Usage:

Count= QPCOUNT%(Array#())

Formula:

QPCOUNT%(Array#()) = UBOUND(Array#, 1) - LBOUND(Array#, 1) + 1

Equivalent spreadsheet function:

@COUNT(list)

4-32 Crescent Software, Inc.

QuickPak Professional

QPMAX - returns the highest value in a list

Usage:

MaxValue = QPMAX#(Array#(})

Chapter 4

Note: This function calls an assembly language subroutine that
quickly scans the array for the highest value. Assembler subroutines
are also provided in QuiclcPak Professional for integer, long
integer, and single precision arrays.

Equivalent spreadsheet function:

@MAX(list)

QPMIN - returns the lowest value in a list

Usage:

MinValue = QPMIN#(Array#(})

Note: This function calls an assembly language subroutine that
quickly scans the array for the lowest value. Assembler subroutines
are also provided in QuiclcPak Professional for integer, long
integer, and single precision arrays.

Equivalent spreadsheet function:

@MIN(list)

QPSTD - Population standard deviation of items in list

Usage:

STD= QPSTD#(Array#())

Equivalent spreadsheet function:

@STD(list)

Crescent Software, Inc. 4-33

I

Chapter 4

QPSUM m returns the sum of all values in an array

Usage:

SUM= QPSUM#(Array#())

Equivalent spreadsheet function:

@SUM(list)

QPV AR - Population variance of values in list

Usage:

VAR= QPVAR#(Array#())

Equivalent spreadsheet function:

@VAR(list)

QuickPak Professional

4-34 Crescent Software, Inc.

Chapter5
Menu/lnputRoullnes

I

I

QuickPak Professional Chapters

AMenu

assembler subroutine contained in PRO.LIB

Purpose:

AMenu is a sophisticated multi-column menu program that accepts a
list of choices in a conventional (not fixed-length) string array. A
selection is made by moving the cursor bar to the desired choice,
and then pressing Enter.

Syntax:
CALL AMenu(BYVAL VARPTR(Array$(Start%)), Startitem%, Count%,

ScanCode%, NormColor%, HiLiteColor%, NumRows%,
NumCols%, Gap%, ULRow%, ULCol%)

Where:

Array$(Start%) is the first element to display in the menu.
Startltem % is the item (not the element number) to be initially
highlighted. That is , if you want the fifth item in the menu to be
highlighted, Startltem % would be set to 5, regardless of the value
of Arry$(Start%).

On entry, Count% holds the total number of elements that can
appear in the menu. On exit, Count% returns the number of the
item (not the element number) that was selected.

ScanCode% indicates which key was used to exit AMenu. You may
also tell AMenu not to redisplay the choices by setting ScanCode%
to 3 (see below).

NormColor% and HiLiteColor% are the colors to use for the menu
items and the currently highlighted item respectively.

NumRows % and NumCols % tell AMenu how large the menu is to
be, and Gap% is the number of spaces to place between each menu
column. Notice that the length of the first item tells AMenu how
long the subsequent items are. Therefore, all of the items should
have the same length.

ULRow% and ULCol% indicate where the upper left corner of the
menu is to be located on the screen.

Crescent Software, Inc. 5-1

I

I

Chapters QuickPak Professional

Comments:

5-2

AMenu is extremely flexible in that the menu choices are displayed
in multiple columns anywhere on the screen, and the BASIC
program can control all aspects of the menu appearance. AMenu
displays itself on the currently active video page.

For maximum flexibility, a box is not drawn around the menu
columns. The Box routine would be ideal for this purpose, and it
may be used prior to calling AMenu if you'd like.

Besides allowing the number of rows and columns to be varied, this
menu has also been designed to be re-entrant. That is, you may call
AMenu subsequently with ScanCode% set to 3, and it will maintain
the current choice. This allows it to be used for toggling selections
on and off, based on the exit code that is returned.

ScanCode % is returned holding either the ASCII value of the
terminating key, or a negative value to indicate an extended key.
This allows you to trap any keys except the four arrow keys that
navigate through the menu. For example, if ScanCode% is set to
13, the Enter key was used to exit AMenu. If ScanCode% is set to,
say, -59, then the Fl key was pressed. Notice that the space bar is
recognized in the examples as a valid way to exit AMenu, because
that key is commonly used for toggling a menu item on and off.

The following example of using AMenu to allow multiple items to be
selected is adapted from the DEMOCM.BAS program:

DD
AMenu VARPTR(Array$(1)), 1, Count%, ScanCode%,

112, 23, 15, 3, 4, 7, 15
SELECT CASE ScanCode%

CASE 13, 32 'Enter or space
IF LEFT$(Array$(Count%), 1) =""THEN

MID$(Array$(Count%), 1, 1) = CHR$(251) 'check mark
ELSE

MID$(Array$(Count%). 1, 1) = " " 'clear the mark
END IF

CASE ELSE
END SELECT
IF ScanCode% <> 27 THEN ScanCode% = 3 'tell AMenu not to

'reinitialize
LOOP UNTIL ScanCode% = 27

Crescent Software, Inc.

QuickPak Professional Chapter5

To simulate staying in the menu while items are being marked,
ScanCode% is set to 3 before subsequently calling AMenu. This
tells AMenu to redisplay the current item, rather than evaluate all of
the incoming parameters again. If this is not done, the entire menu
will be redrawn, and the cursor bar will be placed on the starting
element.

As with all of the QuickPak Professional routines that directly
access video memory, both the foreground and background colors
are combined in a single byte. The OneColor function may be used
to calculate the correct color value. The COLORS.BAS program
displays a table of color combinations, and can be used as a guide.

Also see the AMenuT routine which is intended for use with
fixed-length string arrays.

AMenu and AMenuT are demonstrated in AMEND.BAS.

Crescent Software, Inc. 5-3

I

Chapter 5 QuickPak Professional

AMenuT
assembler subroutine contained in PRO.LIB

Purpose:

AMenuT is nearly identical to AMenu, except it is intended for use
with fixed-length string arrays.

Syntax:
CALL AMenuT{BYVAL VARSEG(Array{Start%)), BYVAL VARPTR(Array(Start%)), _

Startltem%, Length%,Count%, ScanCode%, NormColor%, HiliteColor%,
NumRows%, NumCols%, Gap%, ULRow%, ULCol%)

Where:

Array(Start%) is the first element to display in the menu.
Startltem % is the item (not the element number) to be initially
highlighted. That is, if you want the fifth item in the menu to be
highlighted, Startltem % would be set to 5, regardless of the value
of Array(Start%). Length% is the length of each string element.

On entry, Count% holds the total number of elements that can
appear in the menu. On exit, Count% returns the number of the
item (not the element number) that was selected.

ScanCode% indicates which key was used to exit AMenu. You may
also tell A Menu not to redisplay the choices by setting ScanCode %
to 3 (see below).

NormColor% and HiLiteColor% are the colors to use for the menu
items and the currently highlighted item respectively.

NumRows % and NumCols % tell AMenu how large the menu is to
be, and Gap% is the number of spaces to place between each menu
column.

ULRow% and ULCol % indicate where the upper left corner of the
menu is to be located on the screen.

Comments:

Please see the comments that accompany the description of the
AMenu routine.

5-4 Crescent Software, Inc.

QuickPak Professional Chapters

ASCIIPick and MASCIIPick
assembler subroutines contained in PRO.LIB

Purpose:

ASCIIPick is a menu program that presents the table of ASCII
characters, and waits until one is selected. MASCIIPick is similar,
but it also supports the mouse for making a selection.

Syntax:

CALL ASCIIPick(Char%, Color!%, Color2%, ExitCode%)

or

CALL MASCIIPick(Char%, Color!%, Color2%, ExitCode%)

Where:

Char% is returned holding the ASCII value of the selected
character, Colorl % is the color to use for the menu, and Color2 %
is the highlight color for the currently selected character.

ExitCode% will be O if Enter (or a mouse button press) was used to
make the selection, or 2 if Escape was pressed. If Escape is used,
the original value of Char% will be preserved.

The upper left corner of the menu is placed at the current cursor
position.

Comments:

A selection is made by using the arrow keys or mouse to move the
cursor to the desired character field, and then pressing Enter or the
left mouse button. The PgUp and PgDn keys may also be used to
move the cursor diagonally, and Home or End will move the cursor
to the first or last character respectively. Pressing a character key
will place the cursor on that character.

Char% may be pre-loaded to any legal ASCII value, to indicate
which character on the menu is to be highlighted initially.

Crescent Software, Inc. 5-5

I

I

Chapters QuickPak Professional

5-6

If ExitCode% is set to -1 before calling these routines, the ASCII
chart will simply be displayed, and the routines will not wait for a
key or mouse button press.

MASCIIPick is demonstrated in the ASCIIPIK.BAS example
program.

Also see the related routines ColorPick and MColorPick.

Crescent Software, Inc.

QuickPak Professional Chapters

CapNum
BASIC subprogram contained in CAPNUM.BAS

Purpose:

CapNum displays the current setting of the Cap and NumLock keys.

Syntax:

CALL CapNum

Comments:

CapNum is not really intended to be called separately by your
programs, however it could be. Rather, it is called by the various
BASIC input routines while they are waiting for a key press.

One aspect of CapNum that you should be aware of is that it always
displays the "CAP" and "NUM" messages in black on white
(inverse), and clears them to normal white on black.

If you have a colored background that is to be preserved, you must
modify the CAPNUM.BAS source code. If the QPrint color
variable is changed to -1, the current screen colors will be honored.
However, the messages will not stand out as much as when the
inverse colors are used.

CapNum is shown in context in the DEMOIN.BAS example
program.

Crescent Software, Inc. 5-7

I

I

Chapter5 QuickPak Professional

ColorPick and MColorPick
assembler subroutines contained in PRO.l/B

Purpose:

ColorPick is a menu program that presents a table of colors and
their corresponding values, and waits until one is selected.
MColorPick is similar, but it also supports the mouse for making a
selection.

Syntax:

CALL ColorPick(Colr%, BoxColor%, ExitCode%)

or

CALL MColorPick(Colr%, BoxColor%, ExitCode%)

Where:

Colr% is returned holding the color that was selected, and
BoxColor% is the color to use for the box that surrounds the menu.

ExitCode% will be O if Enter (or a mouse button press) was used to
make the selection, or 2 if Escape was pressed. If Escape is used,
the original value of Colr% will be preserved.

The upper left corner of the menu is placed at the current cursor
position.

Comments:

5-8

A selection is made by using the arrow keys or mouse to move the
cursor to the desired color field, and then pressing Enter or the left
mouse button. The PgUp and PgDn keys may also be used to go to
the top or bottom of the menu, and Home or End will move the
cursor to the first or last color respectively.

Colr% may be pre-loaded to any legal color value, to indicate
which color on the menu is to be highlighted initially.

Crescent Software, Inc.

QuickPak Professional Chapter 5

If ExitCode % is set to -1 before calling these routines, the color
chart will simply be displayed, and the routines will not wait for a
key or mouse button press.

MColorPick is demonstrated in the COLORPIK.BAS example
program.

Also see the related routines ASCIIPick and MASCIIPick.

Crescent Software, Inc. 5-9

I

Chapters QuickPak Professional

Dateln
BASIC subprogram contained in DATEIN.BAS

Purpose:

Dateln provides the ability to enter or edit date fields in a BASIC
program. The cursor automatically skips over the separating
slashes, and Alt-C will clear the field.

Syntax:

CALL Dateln(D$, ExitCode%, Colr%)

Where:

D$ is either an existing string in "MMDDYY" format to be edited,
or a null string to indicate that a new date is being entered.

ExitCode% tells how editing was terminated, as shown below.
Colr% is the field color to be used, and it is packed into a single
byte containing both the foreground and background colors.

Comments:

Because Dateln is intended for entering and editing only dates, it
does not expect a length parameter. However, it will automatically
create the separating slashes during editing, and remove them from
the string before returning.

ExitCode% lets your program know whether the user pressed Enter
to accept the field, the up arrow to go to the previous field, or
Escape.

ExitCode% = 0 Enter, Tab, or the down arrow key was pressed,
or the right arrow moved the cursor beyond the
end of the field, or the field was filled.

ExitCode% = 1 Shift-Tab or the up arrow key was pressed, or
the left arrow put the cursor before the start of
the field.

ExitCode% = 2 Escape was pressed.

5-10 Crescent Software, Inc.

QuickPak Professional Chapter 5

One important point to be aware of is that Dateln calls the CapNum
subprogram to display the current setting of the Cap and NumLock
keys. Therefore, any program that uses Dateln must also load or
include CapNum.

Because Dateln is written in BASIC, it is simple to add additional
exit codes or other features. Dateln provides some degree of date
validation in that the month must be between 1 and 12, and the day
between 1 and 31. See the description of Date2Num for an example
of determining whether a given date is valid.

Dateln is shown in context in the DEMOIN.BAS example program.

Crescent Software, Inc. 5-11

Chapter 5 QuickPak Professional

Dialog
BASIC subprogram contained in DIALOG.BAS

The Dialog subprogram allows you to add useful dialog boxes that
are easily set up and called by your programs, without having to
add the large amount of code that usually accompanies such
routines. When compiled, DIALOG.OBJ is approximately 22k.

The dialog boxes look and function very much like the ones in QB
or QBX, however they are not identical. Locations of the various
components of the dialog box are handled by the Dialog subroutine,
and only their order of appearance may be changed. That is, menus
are always located on the right side of the dialog box, check boxes
and option buttons are always located on the left side of the dialog
box, and text entry fields are always centered unless there is a
menu. In addition, the cursor always remains at the upper left
corner of the menu field when a list box is active.

Please understand that these differences were made to minimize
code size, and not to reduce functionality.

All of the Dialog edit keys function the same as in the QuickBASIC
and QBX editing environments, as shown below:

Tab:

Shift-Tab:

Up/Down/Right/
Left Arrows:

Enter:

Space Bar:

5-12

Advances through each input field in sequence,
from top to bottom. The order in which items are
picked when you use the Tab key is determined
by their order in the Text$ array. Text$ element
1 is accessed first, element 2 is second, and so
forth.

Advances backwards through each selection.

Navigates through each Option Button or menu
choice.

Selects the entries as displayed and exits. If
<Cancel> is highlighted when Enter is pressed,
Dialog responds as if Escape had been pressed.

Is equivalent to hitting the Enter key, or if the
cursor is in a Check Box field it toggles the check
mark on and off.

Crescent Software, Inc.

QuickPak Professional Chapters

Escape: Exits the dialog box and returns the original data,
regardless of any edits that were made.

Left or Right
Mouse Buttons:

Selects the Command Button, or places the cursor
in the field pointed to. Double clicking the left
mouse button on a menu item selects that item,
and exits the dialog box as if Enter had been
pressed.

While in a text entry field all cursor keys are supported, including
the Left and Right arrow keys, Home, End, and Insert. In addition,
Alt-C clears the field, and Alt-R restores its previous contents.

Some additional sacrifices were made to keep code size down, as
follows:

1. Hot keys are not supported (Alt + first letter of
a choice)

2. Only one menu is allowed per dialog box
3. Only one grouping of Option Buttons is supported
4. Mouse scroll bars for menus are not available

Calling Syntax:

CALL Dialog(Choice%, Text$(), Resp$(), Menu$(), Row%, Style%,_
Colr%, Action%)

Where:

On exit, Choice% is returned holding the number of the active
Command Button. If the Escape key was pressed or Cancel was
selected, Choice% instead returns -1.

Text$0 is an array of data indicating the type of data to be
displayed, and its related text (see II Setting up a Dialog Box 11

below).

Resp$0 is a parallel array that on entry passes the text to be
displayed within the various entry fields, and on exit returns the
data entered. For Option Buttons, the number of the box checked is
returned in all of the Option Button elements so you need only
check any one of these elements to find which option was selected.

Menu$0 is an array of data to be displayed in the menu/list box.
The lengths of the strings in the array must all be equal.

Crescent Software, Inc. 5-13

I

Chapter5 QuickPak Professional

Row% if set to O will automatically center the dialog box vertically
on the screen. Setting Row% to -1 will allow you to locate the
dialog box at any screen row. Simply use LOCATE to position the
cursor on the desired upper row before calling Dialog. The dialog
box must of course fit in the space that you have allowed.

Style% is a number between 1 and 4 that determines the line type to
use when drawing the box and dividing line in the Dialog Box.
Style% uses the same number code as the QuickPak Professional
Box routine. Adding 10 to the line type number causes a drop
shadow to be displayed.

Colr% is the desired dialog box color, coded in the format used by
the various QuickPak Professional video routines. See
COLORS.BAS for a chart of all the color combinations.

Action% lets you specify whether or not the Dialog box is to
operate in a re-entrant manner. The table below summarizes the
possible values for Action.

Action= 0

Action= 1

Action= 2

Action= 3

5-14

Dialog is not re-entrant. On entry, the underlying
screen is saved, and the dialog box is displayed.
Dialog maintains control until Enter, Escape, or
the space bar is pressed, or the mouse is clicked
on a Command Button. When that happens,
Dialog restores the original screen and returns.

Initializes Dialog in re-entrant mode. The
underlying screen is saved, the dialog box is
displayed, Action is set to 3, and through a DO
LOOP control is passed alternately between the
dialog box and the calling program after each key
press. (Menu or text field data is returned only
after exiting those fields.) This is shown in the
example program DEMODIA2.BAS and
DEMODIAP.BAS.

Without re-displaying the dialog box itself,
Action = 2 re-displays any data in the Response$
array, as well as any plain text strings from the
Text$ array.

This does not need to be set by you.

Crescent Software, Inc.

QuickPak Professional Chapter 5

Action= 4 Indicates that a terminating key has been pressed
and that the Choice and Response$0 variables
should be examined.

Action= 5

Setting up a dialog box:

Closes the dialog box and re-displays the
underlying screen.

The strings passed in the Text$ array to DIALOG.BAS determine
the appearance of the dialog box. Depending upon the first few
characters in the string, Dialog interprets them as either Command
Buttons, Option Buttons, Check Boxes, Text entry fields, plain
strings, or List/Menu fields.

Command Buttons are designated by surrounding the text with
"greater than" and "less than" characters, and a single blank space
must be used as shown here:

"< OK>"

The " < " symbol defines this string as a Command Button. The
text inside " < > " must have a space between it and the " < > "
symbols. Command buttons must start at Text$() element 1 and be
consecutive. Note that the Command Button appearing in Text$
element 1 will always be the default. You may also have as many
Command Buttons as will fit on the screen but there must be at least
one.

Option Buttons are designated by empty parentheses and a
descriptive string like this:

" () related text"

The"(" symbol defines this string as an Option Button. A
CHR$(7) dot character must also be placed into one of the
corresponding Response$ array elements. You may have as
many Option Buttons as will fit on the screen, but they must be
consecutive. Option Buttons may begin at any element in the
Text$ array after element 1. If you prefer to use a character
other than 7 for the Option Button indicator, search for and
change the Dot$ variable in the DIALOG .BAS source code.

Check Boxes are designated by square brackets, and are also
followed by a description as follows:

Crescent Software, Inc. 5-15

I

Chapter 5 QuickPak Professional

" [] related text"

The "[" symbol defines this string as a Check Box. A check
mark ("X") may or may not be placed in one of the
corresponding Response$ array elements. You may have as
many Check Boxes as will fit on the screen, and they may be in
any order. Check Boxes may begin at any element in the Text$
array higher than element 1.

Text entry fields are designated by curly braces as well as a string
that describes its purpose:

" { 23} related text"

The " {" symbol defines this string as a Text entry field. The
number between the braces tells Dialog how long the text field
is to be. To make this field accept numbers only, add 100 to the
text length. The "related text" will be used as a heading for the
field. You may have as many Text entry fields as will fit on the
screen. Text Fields may begin at any element in the Text$ array
after element 1.

Menu/List boxes are designated by vertical bars, and trailing
descriptive text as shown here:

" I 308 I related text"

The" I" symbol defines this string as a Menu/List box. The
number between the bars tells Dialog both the number of rows
and the number of columns that are in the field. The right two
digits indicate the number of rows. If more than one column is
desired, add the number of columns * 100 to the number of
rows. In this example, a menu 8 rows high by 3 columns wide
is requested. Please note that the number of rows is a minimum
number. The Menu/List field will expand to fill the right side
of the dialog box no matter how many rows have been specified.
You may have only one Menu/List field, and it may appear in
any Text$ array element after element 1.

Plain Strings are designated by the absence of any delimiting
characters:

5-16 Crescent Software, Inc.

QuickPak Professional Chapter 5

"any other string"

Plain strings are automatically centered in the dialog box,
although they may be offset left or right by padding them with
spaces. Plain strings may be specified in any Text$ array
element after element 1. If a title is desired for the dialog box,
it must be assigned to element O in the Text$ array.

Please see the DEMODIAL.BAS, DEMODIAP.BAS and
DEMODIA2.BAS demonstration programs for more information on
using Dialog.

Crescent Software, Inc. 5-17

I

Chapter5 QuickPak Professional

DirFile
assembler subroutine contained in PRO.LIB

Purpose:

DirFile provides an ideal menu for selecting a file name from a list
of choices. The selection is made by using the arrow keys to move
the cursor bar to the desired choice, and then by pressing Enter.

Syntax:
CALL DirFile(BYVAL VARPTR(Array$(1)), Count%, ScanCode%,

MsgColor%, FileColor%, HiLiteColor%, BoxColor%)

Where:

Array$(1) is the first element in the array to display, though any
valid starting element may be specified. All of the elements are
assumed to have a length of 12, and any additional characters will
not be displayed.

Count% is the total number of items to display on entry, and it
returns holding the array element number selected when DirFile is
finished.

ScanCode % indicates which key the user pressed to exit the menu
(see below).

MsgColor% is the color for the prompt and other messages that are
displayed, FileColor% indicates what color to use for the file
names, and HiLiteColor% is the color of the currently highlighted
item.

BoxColor% tells DirFile what color to use when drawing the
surrounding box.

5-18 Crescent Software, Inc.

QuickPak Professional Chapters

Comments:

DirFile allows you to emulate the original Microsoft style of file
directory selection in your own programs.ScanCode% is returned
holding either the ASCII value of the terminating key, or a negative
value to indicate an extended key. This allows you to trap any keys
except the four arrow keys that navigate through the menu. For
example, if ScanCode% is set to 13, the Enter key was used to exit
DirFile. If ScanCode% is set to, say, -59, then the Fl key was
pressed.

As with most of the QuickPak Professional routines that access
video memory directly, both the foreground and background colors
are contained in a single byte. The OneColor function should be
used to calculate the value of the color byte.

DirFile always displays itself on the currently active video page.

DirFile is demonstrated in the program DEMOCM.BAS.

Crescent Software, Inc. 5-19

I

Chapter5 QuickPak Professional

Editor
assembler subroutine contained in PRO.LIB

Purpose:

Editor is an assembly language text input routine that also allows
editing an existing string.

Syntax:

CALL Editor(Ed$, ActiveLength%, ScanCode%, Num0nly%,
Caps0n%, Norma1Color%, EditColor%, Row%, Column%)

Where:

Ed$ is the string being entered or edited, which must be
pre-assigned to the correct maximum length (see below).
ActiveLength % is then returned holding the actual length of the
string after editing.

ScanCode% indicates how editing was terminated. You may also
tell Editor to resume editing at any arbitrary cursor position (see
below).

NumOnly% is 1 to accept numeric input only, or Oto allow any
characters. CapsOn% is a flag to tell Editor to automatically
capitalize all incoming text-use 1 to capitalize or 0 not to.

Norma1Color% is the color to restore the text to when editing has
finished, and EditColor% is the color to use while the text is being
entered.

Row% and Column% indicate where on the screen the beginning of
the input field is placed.

Comments:

Editor is written in assembly language, and will thus occupy very
little code space when compared to an equivalent input routine
written in BASIC.

5-20 Crescent Software, Inc.

QuickPak Professional Chapter 5

Because an assembler routine cannot create or assign a string, it is
up to you to establish the string with the maximum length allowed.
For example, if a new string is to be entered and it will be restricted
to a length of fifteen characters, you would first assign Ed$ to a
string of blanks:

Ed$ = SPACE$(15)

If Ed$ already contains information that is to be edited, you would
instead pad it to a length of 15 with trailing blanks:

Ed$= Ed$+ SPACE$(15 - LEN(Ed$))

ScanCode% is returned holding either the ASCII value of the
terminating key, or a negative value to indicate an extended key.
This allows you to trap any Alt or function keys. For example, if
ScanCode% is set to 13, the Enter key was used to exit Editor. If
ScanCode% is set to, say, -104, then Alt-Fl had been pressed.

ScanCode% may also be initialized before calling Editor to either
resume editing at the cursor location last used, at any arbitrary
cursor location, or at the beginning of the field. This lets you
reenter Editor, for example after detecting Fl and displaying a help
screen. Setting ScanCode% to 1 tells it to resume editing at the
point where the cursor was located when Editor was last exited. If it
is instead set to 2, editing will resume at the location specified by
the Column% parameter. Editor considers any other value to mean
that the string is being edited for the first time.

As with the other QuickPak Professional input and menu programs,
Editor will display itself on whatever screen page is currently active.

Two additional keys that Editor recognizes are Alt-C, which clears
the field, and Alt-R, which restores its original contents.

A complete demonstration of Editor is given in the DEMOCM.BAS
example program.

Crescent Software, Inc. 5-21

Chapter 5 QuickPak Professional

Lts2Menu
BASIC subprogram contained in LTS2MENU.BAS

Purpose:

Lts2Menu is a Lotus 123 "look alike" menu, where a list of choices
is displayed horizontally on a single line, along with a second line
containing a prompt for the current item. A selection is made either
by using the arrow keys to highlight a choice and pressing Enter, or
by pressing a key that corresponds to the first letter of a choice.

Syntax:

CALL Lts2Menu(Item$(), Prompt$(), Choice%, Colr%)

Where:

Both Item$0 and Prompt$() are conventional (not fixed-length)
string arrays. Item$ contains a list of the menu items, and Prompt$
holds the text that describes each choice. The maximum length for
any item or prompt is 78 characters.

Colr% is the color to use when displaying the choices, and
Choice% returns holding the choice number that was selected.

Notice that the color that was specified is reversed to create a
highlight for the current choice. The prompt color is also derived
from the Colr% parameter, though this may be changed to suit.
Comments in the source code show how to do this.

Comments:

As with many of the QuickPak Professional routines, both the
foreground and background colors are combined into a single
variable. The OneColor function may be used to calculate the
correct value. You could also run the COLORS .BAS program to
view all of the possible color combinations.

As shipped, Lts2Menu waits until the Enter key is pressed before
returning to the calling program. However, comments in the source
code show how to have it return as soon as the first letter of a
choice has been pressed. If you make this modification, though, be
aware that each choice must begin with a unique first letter.

5-22 Crescent Software, Inc.

QuickPak Professional Chapter 5

If Escape is pressed, Lts2Menu will return showing a choice of
zero. Both the Home and End keys are also recognized, which
highlight the first and last choices respectively.

Notice that Lts2Menu always saves the underlying screen before it
displays itself, and restores it again before returning to the calling
program.

Lts2Menu and its companion LtsMenu are each shown in context in
the DEMOLTS.BAS example program.

Crescent Software, Inc. 5-23

I

Chapters QuickPak Professional

LtsMenu
BASIC subprogram contained in LTSMENU.BAS

Purpose:

LtsMenu is an alternate Lotus 123 "look alike" menu, where a list
of choices is displayed horizontally on a single line, but without any
prompt information. A selection is made either by using the arrow
keys to highlight a choice and pressing Enter, or by pressing a key
that corresponds to the first letter of a choice.

Syntax:

CALL LtsMenu(Item$(), Choice%, Colr%)

Where:

Item$() is a conventional (not fixed-length) string array containing a
list of the choices, each of which may be up to 78 characters in
length.

Colr% is the color to use when displaying the choices, and
Choice% returns holding the choice number that was selected.
Notice that the color that was specified is reversed to create a
highlight for the current choice.

Comments:

As with many of the QuickPak Professional routines, both the
foreground and background colors are combined into a single
variable. The OneColor function may be used to calculate the
correct value. You could also run the COLORS.BAS program to
view all of the possible color combinations.

As shipped, LtsMenu waits until the Enter key is pressed before
returning to the calling program. However, comments in the source
code show how to have it return as soon as the first letter of a
choice has been pressed. If you make this modification, though, be
aware that each choice must begin with a unique first letter.

If Escape is pressed, LtsMenu will return showing a choice of zero.
Both the Home and End keys are also recognized, which highlight
the first and last choices respectively.

5-24 Crescent Software, Inc.

QuickPak Professional Chapter 5

Notice that LtsMenu always saves the underlying screen before it
displays itself, and restores it again before returning to the calling
program.

LtsMenu and its companion Lts2Menu are each shown in context in
the DEMOLTS.BAS example program.

Crescent Software, Inc. 5-25

I

I

Chapter 5 QuickPak Professional

MAMenu
assembler subroutine contained in PRO.LIB

Purpose:

MAMenu is a full-featured multi-column menu routine, which
allows selecting items either with the keyboard or a mouse. This is
a mouse-aware version of the original AMenu routine, which is
described elsewhere.

Syntax:

CALL MAMenu(BYVAL VARPTR(Array$(1)), Selection%, Start%, Count%,
ScanCode%, Norma1Color%, Hilight%, NumRows%, NumCols%, Gap%, _
Row%, Column%)

Where:

Array$(!) is the first element in the string array, and Selection% is
the element to be highlighted initially. On exit, Selection% holds
the element that was selected.

Start% tells MAMenu which element to place in the upper left
corner of the menu, and Count% holds the total number of elements
to be displayed.

ScanCode% is returned holding the key that was used to exit
MAMenu. If a normal key was pressed, ScanCode% will hold its
ASCII value. For example, if Enter was pressed, then ScanCode%
will be set to 13. If an extended key was used, then ScanCode%
will hold a negative version of the key's extended code. That is, Fl
would be returned as -59.

Normal Color% is the color to use for all of the selections except the
one that is currently highlighted, and Hilight% is the color to use
for the scroll bar.

NumRows % and NumCols % tell MA Menu how many rows and
columns to display respectively, and Gap% is the number of
columns between each cluster of items.

Row% and Column% indicate where to place the upper left corner
of the menu.

5-26 Crescent Software, Inc.

QuickPak Professional Chapter 5

Comments:

If the mouse is clicked while its cursor is outside of the active menu
area, then MAMenu will return the following information:

ScanCode% = 1000

ScanCode% = 1001

ScanCode% = 1002

Row% and Column%

the left button was pressed

the right button was pressed

the middle button was pressed (on mice so
equipped)

where the mouse cursor was located at the
time the mouse button was pressed

If the mouse button is pressed while the mouse cursor is within the
menu, then the mouse clicks will have the following effect:

Single click

Double click

the cursor bar will be relocated to the new
position

a rapid double-click will exit MAMenu
with ScanCode% set to 1003, and
Selection% will hold the current selection

In order to use MAMenu within a BASIC program loop, it is
assumed that the mouse button has been pressed once on entry.
Therefore, an additional mouse button click within the time-out
period will be treated as a double-click.

MAMenu and MAMenuT are demonstrated in the MOUSECM.BAS
example program.

Crescent Software, Inc. 5-27

I

I

Chapters QuickPak Professional

MAMenuT
assembler subroutine contained in PRO.LIB

Purpose:

MAMenuT is a full-featured multi-column menu routine, which
allows selecting items either with the keyboard or a mouse. This is
a "mouse-aware" version of the original AMenuT routine, which is
described elsewhere.

Syntax:

CALL MAMenuT(BYVAL VARSEG(Array$(1)), BYVAL VARPTR(Array$(1)), _
Selection%, Start%, Length%, Count%, ScanCode%, NormalColor%,
Hilight%, NumRows%, NumCols%, Gap%, Row%, Column%) -

Where:

Array$(1) is the first element in the string array, and Selection% is
the element to be highlighted initially. On exit, Selection% holds
the element that was selected.

Start% tells MAMenuT which element to place in the upper left
corner of the menu, Count% holds the total number of elements to
be displayed, and Length% is the number of bytes that comprise
each fixed-length element.

ScanCode % is returned holding the key that was used to exit
MAMenuT. If a normal key was pressed, ScanCode% will hold its
ASCII value. For example, if Enter was pressed, then ScanCode%
will be set to 13. If an extended key was used, then ScanCode%
will hold a negative version of the key's extended code. That is, Fl
would be returned as -59.

Normal Color% is the color to use for all of the selections except the
one that is currently highlighted, and Hilight% is the color to use
for the scroll bar.

NumRows % and NumCols % tell MAMenuT how many rows and
columns to display respectively, and Gap% is the number of
columns between each cluster of items.

5-28 Crescent Software, Inc.

QuickPak Professional Chapter 5

Row% and Column% indicate where to place the upper left corner of
the menu.

Comments:

Please see the comments that accompany the MAMenu routine.

Crescent Software, Inc. 5-29

Chapters QuickPak Professional

Maskln
BASIC subroutine contained in MASKIN.BAS

Purpose:

Maskln is a sophisticated "mask input" routine, which lets you
specify the type of characters that are entered at each position in the
field.

Syntax:
Mask$ = "Enter your name: " + STRING$(15, 1)
Text$= SPACE$(15)
Call Maskln(Mask$, Text$, Mski)

Where:

Mask$ contains the prompt text and bit-encoded mask characters,
and Text$ returns holding the entered text. Mski is a TYPE
variable that controls the field and prompt colors, the polling action,
and indicates the last key that was pressed.

The mask characters are comprised of ASCII values 1 - 31 as
follows:

Accept letters, convert to upper case
Accept letters, convert to lower case
Accept digits
Accept math punctuation (-+, .)

Accept all punctuation

BIT

1
2

3

4
5

Note that combining bits 1 and 2 tells Maskln to accept letters and
not alter the capitalization.

5-30 Crescent Software, Inc.

QuickPak Professional Chapter 5

Comments:

Like many of the other Quick.Pak Professional input routines,
Maskln can optionally be used in a polled mode. When the Action
portion of the TYPE variable is set to 0, Maskln works like a
normal input routine. That is, it retains control until Enter, Tab,
Shift-Tab, or Escape are pressed. The other supported action
values are listed below, and they are compatible with the codes used
by PullDown, VertMenu, QEdit, and the other pollable routines.

Notice that Maskln does not support inserting or deleting
characters, because that could let characters that are legal for one
field position be moved into positions where they would be illegal.
Therefore, the Delete key merely clears the current character. Also
notice that Maskln beeps if an illegal character is typed. If you
prefer to have such keys be simply ignored, search for the BEEP
statement and remove it.

Any combination of bits may be used as a field mask. For
example, to accept only letters and numbers, and also force
capitalization for the letters you would use CHR$(5) for that field
position. A complete list of all the combinations is shown in the
DEMOMASK.BAS demonstration program.

Text$ must be initialized to the appropriate length. If Text$ is
shorter than the actual field size specified in Mask$, only as many
characters as can will be returned.

Mski is a user-defined TYPE variable that controls the field colors
and editing action, and also returns last key pressed. A TYPE
variable is used to minimize the number of passed parameters, and
thus reduces the size of your programs. Mski is defined as follows:

TYPE MaskParms
Ky AS INTEGER
Action AS INTEGER
MColr AS INTEGER
FColr AS INTEGER

END TYPE
Dim MSKI as MaskParms

'last key stroke entered
'action flag
'message color
'field color

'create the variable

When Maskln returns, Ky will hold the ASCII value of the last key
pressed. If an extended key was pressed, it will be returned as a
negative number. For example, pressing Escape to exit will set
MSKI.Ky to 27, and pressing Fl instead returns -59.

Crescent Software, Inc. 5-31

I

I

Chapter 5 QuickPak Professional

The Action flag controls how Maskln reacts within the program as
follows:

Action = 0:

Action = 1:

Action= 2:

Action= 3:

Initializes (displays) the field and waits for
keystrokes exiting when Enter, Escape, Tab,
Shift-Tab, or the up or down arrow keys are
pressed.

Initializes the field, checks for keystrokes, and
sets Action to 3 for a subsequent polled loop.

Initializes only, does not check for keystrokes,
and exits with an Action of 3.

Does not initialize field, just checks for key
activity.

MColr is the color to print the message or prompt portion of the
mask string, using the QuickPak method of combined
foreground/background colors.

FColr is the color to print the input field portion of the mask string.

See COLORS.BAS for a demonstration of the color combinations
Maskln expects.

5-32 Crescent Software, Inc.

QuickPak Professional Chapter 5

l\1Editor
assembler subroutine contained in PRO.LIB

Purpose:

MEditor is a general purpose input routine that allows entering new
text, as well as editing an existing string. This is a "mouse-aware"
version of the original Editor subroutine which is described
elsewhere in this manual.

Syntax:

CALL MEditor(Ed$, ActiveLength%, ScanCode%, Num0nly%, Caps0n%, _
Norma1Color%, EditColor%, Row%, Column%, CurrentColumn%)

Where:

Ed$ is the string to be entered or edited. This string must be
initialized to the maximum acceptable length of the string being
input.

ActiveLength % returns holding the active length of the string, not
counting any trailing blanks.

ScanCode% is returned holding the key that was used to exit
MEditor. If a normal key was pressed, ScanCode% will hold its
ASCII value. For example, if Enter was pressed, then ScanCode%
will be set to 13. If an extended key was used, then ScanCode%
will hold a negative version of the key's extended code. That is, Fl
would be returned as -59.

NumOnly % and CapsOn % may be optionally set to 1 to indicate
that only numbers are acceptable, or that all letter will be forced to
upper case. Otherwise, these should be zero.

EditColor% tells MEditor which color to use while editing, and
Norma1Color% is the color to restore the text to when editing is
terminated.

Row% and Column% specify where to place the left edge of the
field. On entry, CurCol% is the column at which to place the
cursor, and on exit it holds the column where the cursor was last.

Crescent Software, Inc. 5-33

I

I

Chapter 5 QuickPak Professional

Comments:

If the mouse is clicked while its cursor is outside of the editing
field, then MEditor will return the following information:

ScanCode% = 1000

ScanCode% = 1001

ScanCode% = 1002

Row% and Column%

the left button was pressed

the right button was pressed

the middle button was pressed (on mice so
equipped)

where the mouse cursor was located at the
time the mouse button was pressed

Please see the description for the Editor routine for a list of
keystrokes and other features that are supported by MEditor.

MEditor is demonstrated in the MOUSECM.BAS example program.

5-34 Crescent Software, Inc.

QuickPak Professional Chapter5

MenuVert
assembler subroutine contained in PRO.LIB

Purpose:

Menu Vert is a vertical menu program that accepts a list of choices
in a conventional (not fixed-length) string array. The choices are
displayed in a column, and a selection is made by using the up and
down arrow keys to move a cursor bar to the desired choice.
Pressing Enter then selects that choice. The PgUp, PgDn, Home
and End keys are also supported.

Syntax:

CALL MenuVert(BYVAL VARPTR(Array$(1)), Numl ines%, ScanCode%,
Choice%, Norma1Color%, HiL iteColor%, Row%, Column%)

Where:

Array$(1) is the first element in the array to display, though any
valid starting element may be specified.

NumLines % is the desired height of the menu, which must be no
greater than the number of items in the array.

ScanCode% tells which key was used to make a selection (see
below). On entry, ScanCode% must hold the total number of items
in the array.

Choice% holds the element that was highlighted when MenuVert
returns.

Norma!Color% is the color to use for the choices, and
HiLiteColor% is the color for the currently highlighted item. Both
the foreground and background colors are contained in a single byte.

Row% and Column% determine the upper left corner of the menu
on the screen.

Crescent Software, Inc. 5-35

I

Chapter 5 QuickPak Professional

Comments:

To minimize the number of passed parameters, ScanCode% is also
used to tell Menu Vert how large the array is. The length of the first
array element is used for the menu width, and it is assumed that all
ilems will be the same length.

ScanCode% is returned holding either the ASCII value of the
terminating key, or a negative value to indicate an extended key.
This allows you to trap any Alt or function keys. For example, if
ScanCode% is set to 13, the Enter key was used to exit MenuVert.
If ScanCode% is set to, say, - 84, then Shift-Fl had been pressed.

As with the other QuickPak Professional input and menu programs,
Menu Vert will display itself on whatever screen page is currently
active.

A box is not drawn around the menu, though the Box routine would
be ideal if you want that feature. MenuVert is shown in the
DEMOCM.BAS example program.

5-36 Crescent Software, Inc.

QuickPak Professional Chapter5

MGetKey
assembler function contained in PRO.LIB

Purpose:

MGetKey first clears the keyboard buffer of any pending keys, and
then waits until either a key or mouse button has been pressed. This
is a "mouse-aware" version of the QuickPak Professional WaitKey
routine.

Syntax:

ScanCode = MGetKey%(Row%, Column%)

Where:

Scan Code% is returned holding the key or mouse button that was
pressed, and Row% and Column% indicate the location of the
mouse cursor at the time the mouse button was pressed.

Comments:

Because MGetKey has been designed as a function, it must be
declared before it may be used.

ScanCode % is assigned a value that corresponds to the key that was
pressed, or the mouse button if that was used. If a normal key was
pressed, ScanCode% will hold its ASCII value. For example, if
Enter was pressed, then ScanCode% will be set to 13. If an
extended key was used, then ScanCode% will hold a negative
version of the key's extended code. That is, Fl would be returned
as -59.

If the mouse button was pressed, then MGetKey will return the
following information:

ScanCode% = 1000 the left button was pressed

ScanCode% = 1001 the right button was pressed

ScanCode% = 1002 the middle button was pressed (on mice so
equipped)

Crescent Software, Inc. 5-37

I

Chapter5

Row% and Column%

QuickPak Professional

where the mouse cursor was located at the
time the mouse button was pressed

MGetKey is demonstrated in the MOUSECM.BAS example
program.

5-38 Crescent Software, Inc.

QuickPak Professional Chapter5

l\11\1enu Vert
assembler subroutine contained in PRO.LIB

Purpose:

MMenuVert is a complete vertical menu subroutine that
accommodates selecting from a list of items. This is a
"mouse-aware" version of the Menu Vert routine described
elsewhere.

Syntax:

CALL MMenuVert(BYVAL VARPTR(Array$(1)), Selection%, Start%,
ScanCode%, NormalColor%, Hilight%, NumRows%, Row%, Column%)

Where:

Array$(1) is the first element in the string array, and Selection% is
the element to be highlighted initially. On exit, Selection% holds
the element that was selected.

Start% tells MMenuVert which element to place at the top of the
menu, and on entry, ScanCode% must be set to the total number of
elements in the array.

On return, ScanCode % will hold the key that was used to exit
MMenuVert. If a normal key was pressed, ScanCode% will contain
its ASCII value. For example, if Enter was pressed, then
ScanCode% will be set to 13. If an extended key was used, then
ScanCode% will hold a negative version of the key's extended
code. That is, Fl would be returned as -59.

Normal Color% is the color to use for all of the selections except the
one that is currently highlighted, and Hilight% is the color to use
for the scroll bar.

NumRows % tells MMenu Vert how many rows to display on the
screen, which should not be more than the number of elements
specified in ScanCode%.

Row% and Column% indicate where to place the upper left corner
of the menu.

Crescent Software, Inc. 5-39

I

I

Chapter5 QuickPak Professional

Comments:

If the mouse is clicked while its cursor is outside of the active menu
area, then MMenuVert will return the following information:

ScanCode% = 1000

ScanCode% = 1001

ScanCode% = 1002

Row% and Column%

the left button was pressed

the right button was pressed

the middle button was pressed (on mice so
equipped)

where the mouse cursor was located at the
time the mouse button was pressed

If the mouse button is pressed while the mouse cursor is within the
menu, then the mouse clicks will have the following effect:

Single click

Double click

the cursor bar will be relocated to the new
position.

a rapid double-click will exit MMenuVert
with ScanCode% set to 1003, and
Selection% will hold the current selection.

In order to use MMenuVert within a BASIC program loop, it is
assumed that the mouse button has been pressed once on entry.
Therefore, an additional mouse button click within the time-out
period will be treated as a double-click.

MMenuVert is demonstrated in the MOUSECM.BAS example
program.

5-40 Crescent Software, Inc.

QuickPak Professional Chapter5

Numln
BASIC subprogram contained in NUMIN.BAS

Purpose:

Numln provides the ability to enter or edit a numeric field in a
BASIC program. The decimal point is skipped automatically, and
Alt-C may be used to clear the field.

Syntax:

CALL Numln(Number#, Max%, Places%, ExitCode%, Colr%)

Where:

Number# is a double precision value to be entered or edited.

Max% is the maximum number of digits to the left of the decimal
point, and Places% is the number of digits to the right.

ExitCode% tells how editing was terminated, as shown below.

Colr% is the field color to be used, and it is packed into a single
byte containing both the foreground and background colors.

Comments:

ExitCode% lets your program know whether the user pressed Enter
to accept the field, the up arrow to go to the previous field, or
Escape.

ExitCode% = 0 Enter, Tab, or the down arrow key was pressed,
or the right arrow moved the cursor beyond the
end of the field, or the field was filled.

ExitCode% = 1 Shift-Tab or the up arrow key was pressed.

ExitCode% = 2 Escape was pressed.

One important point to be aware of is that Numln calls the CapNum
subprogram to display the current setting of the Cap and NumLock
keys. Therefore, any program that uses Nu min must also load or
include CapNum.

Crescent Software, Inc. 5-41

I

Chapter5 QuickPak Professional

Because Numln is written in BASIC, it is simple to add additional
exit codes or other features. You may also modify Numln to accept
a single precision variable if you'd like. Simply use Search and
Replace to change every occurrence of "N#" to "N!" within the
Numln subprogram source code.

Numln is shown in context in the DEMOIN.BAS example program.

5-42 Crescent Software, Inc.

QuickPak Professional Chapter 5

PickList
BASIC subprogram contained in PICKL/ST.BAS

Purpose:

PickList is a "front end" subprogram for VertMenu that allows
selecting multiple items from a single menu.

Syntax:

CALL PickList (Items$(), Picked%(), NPicked%, Cnf)

Where:

Item$() is a conventional (not fixed-length) string array that contains
the items to display, and elements in the Picked%() array indicate
which ones were selected. NPicked% contains the total number of
items that were chosen, and Cnf is a special TYPE variable that is
used by VertMenu.

Comments:

PickList is useful in a variety of situations where multiple choices
must be accommodated. For example, it could be used to select a
group of files to be printed. Because PickList calls upon VertMenu
to do most of the work, all of the features in VertMenu are
available in PickList. The menu may be scrolled to display more
items than will fit on the screen, a mouse is fully supported, and the
menu colors are easily controlled via the Cnf TYPE variable.

While the menu is active, the user may press either Enter or the
space bar to select an item. Their selection is indicated with a check
mark that is placed to the right of the menu item. Pressing Enter or
the space bar a second time removes the check mark. When
selection is complete, pressing Escape returns control to the calling
program.

Notice, the items may also be selected by double-clicking with a
mouse

Crescent Software, Inc. 5-43

I

Chapter5 QuickPak Professional

The Picked% O array indicates which items have been selected with
a non-zero value, and also the sequence number for each selection.
That is, if the item first selected in the list was, say, item 14, then
Picked%(!) would hold the number 14.

The size to which Picked%O has been dimensioned controls the
maximum number of items that may be selected. For example, if
Picked%() is dimensioned to ten items, then only that many may be
picked, regardless of how many items are actually in the Item$()
array. Picked%O would usually be dimensioned to the same number
of elements as the Item$() array.

You should pad each element in the Item$() array with three trailing
spaces to make room for the check marks. This also tells PickList to
add a separating divider between the items and the check marks. If
an item does not contain at least three trailing spaces, PickList will
not display the divider.

PickList is demonstrated in the DEMOPICK.BAS example program.

5-44 Crescent Software, Inc.

QuickPak Professional Chapters

PullDown
BASIC subprogram contained in PUllDOWN.BAS

Purpose:

PullDown is a complete multiple-menu subprogram with many
important capabilities including full support for a mouse. Besides
being able to display more than one list of choices, it always saves
the underlying screen, draws an attractive shadow automatically,
and accommodates a separating divider between related groups of
items.

Further, selected menu items may be allowed or disallowed at will.
Finally, PullDown may be operated in a unique multi-tasking mode,
whereby it is polled periodically to see if a choice has been selected.

Syntax:

CALL Pu11Down(Choice$(), Status%(), Menu%, Choice%, Ky$, _
Action%, Cnf)

Where:

Choice$O is a two-dimensional array containing the list of choices
for each menu. If any element is assigned to a hyphen only("-"),
it will be replaced by a separating line and not be selectable by the
user.

Status%() is a parallel two-dimensional array that indicates which
choices are active. Choices are deactivated by assigning any
non-zero value to the elements that corresponds to a given item in
the Choice$ array.

Menu% indicates which menu was active when a choice was
selected, and may also be pre-loaded to force a given menu to be
initially displayed. Choice% indicates which choice was selected,
and may also be pre-loaded to force a given choice to be initially
highlighted.

Crescent Software, Inc. 5-45

I

Chapter5 QuickPak Professional

Ky$ holds the last key that was pressed by the user, and Action%
tells PullDown how it is being used. Cnf is a special TYPE variable
that contains information about the host PC.

Comments:

PullDown is explained in depth in the section entitled
"Multi-Tasking Menus", and two complete demonstrations are also
provided. DEMOPULL.BAS shows the minimum setup required for
calling PullDown, and DEMOMENU .BAS illustrates some of its
more advanced uses.

5-46 Crescent Software, Inc.

QuickPak Professional Chapter5

PullDnMS
BASIC subprogram contained in PULLDNMS.BAS

Purpose:

PullDnMS is a complete pull-down menu system similar to the
regular PullDown subprogram described elsewhere. However,
PullDnMS has been designed to behave exactly like the menus used
in QuickBASIC 4.5 and later.

Syntax:

CALL PullDnMS (Choice$(), Stat%(), Menu%, Choice%, Ky$, Action%)

Where:

Choice$() is a 2-dimensional array that holds the menu choices.

Choice$(0, Menu) holds the menu titles, and Choice$(Choice,
Menu) holds the selections for each menu. Using a CHR$(45)
hyphen for a choice specifies a non-selectable dividing line across
the menu.

Stat%() is a 2-dimensional array, which indicates whether an item is
selectable, and also which letter in the string is to be highlighted for
one-key selection.

Menu% is returned holding the menu that was active when the user
made a selection. It may also be pre-loaded with a non-zero value to
cause that menu to be displayed initially.

Choice% is returned holding the choice that was selected within a
given menu.

Ky$ is returned holding the last key that was pressed by the user.
For example, if Escape was pressed to exit the menu, Ky$ will hold
CHR$(27).

The Action parameter specifies how the menu is to operate, and this
is described in detail in the section entitled "Multi-Tasking Menus"
elsewhere in this manual.

Crescent Software, Inc. 5-47

I

I

Chapter5 QuickPak Professional

Comments:

One of the most important differences between PullDnMS and the
original PullDown routine is in the operation of the Stat%() array.
With PullDown, elements in the Stat% array merely control which
menu choices may be selected by the user. Choices that are inactive
are both dimmer in color, and ignored if they are pressed.
However, PullDnMS expands the functionality of the Stat%() array
by also allowing you to specify which character in the choice string
is the "hot letter."

To save memory, the two bytes in each Stat%() element are used
independently. If the low byte is non-zero, then that choice may not
be selected by the user. The high byte then indicates which
character is to be highlighted and made selectable with a single key.
The example below shows how to define the choice "Save As", as
used within the QuickBASIC 4.5 editor:

0123456789 <--- character position (zero-based)
Menu$(3, 0) = "Save As ... "

Stat%(3, 0) = 5 * 256 + 1 '<--- highlight the 6th character, "A"
A Optional to make the choice inactive.

The character position is intentionally zero-based rather than
one-based, so the first letter will be the default if that element in
Stat%() is left unassigned.

PullDnMS is demonstrated in the DEMOPLMS.BAS example
program.

5-48 Crescent Software, Inc.

QuickPak Professional Chapter 5

QEdit
BASIC subprogram contained in QEDIT.BAS

Purpose:

QEdit is a complete text editor subprogram that may be called as a
"pop-up" from within a BASIC program. QEdit automatically saves
the underlying screen and draws an attractive shadow, and it may be
used in the 25, 43, or 50 line screen modes.

Syntax:
CALL QEdit(Array$(), Ky$, Action%, Ed)

Where:

Array$() is a conventional (not fixed-length) string array that will
hold the text being entered or edited. The size to which Array$ has
been dimensioned determines the maximum number of lines that
may be entered.

Ky$ is returned holding the last key that was pressed. For example,
Ky$ would be CHR$(27) if the user pressed Escape to exit QEdit.

Action% indicates how QEdit is being invoked. If Action% is set to
0 when QEdit is invoked, QEdit will save the underlying screen,
and allow editing until the Escape key is pressed.

Ed is a special TYPE variable that controls a number of QEdit's
parameters.

Comments:

The operation of QEdit is explained in depth elsewhere in this
manual (see the Table of Contents), along with a detailed discussion
of the Action% and Ed parameters. A complete demonstration is
also provided in the DEMOEDIT.BAS example program.

Crescent Software, Inc. 5-49

I

■

Chapter5 QuickPak Professional

There are actually three versions of QEdit; all have the same CALL
name, but they are in separate files. QEDITS.BAS contains a
smaller version that omits the block operations and thus adds less
code to your programs. The QEdit contained in QEDIT7 .BAS has
the same features as QEdit, but it is optimized for use in the QBX
editing environment. Since QBX will place small subprograms (less
than 16K) into expanded memory, QEdit7 has been reorganized into
several subprograms instead of one large one.

Please note that our QEdit subroutine in not the same as the QEdit
text editor program published by SemWare.

5-50 Crescent Software, Inc.

QuickPak Professional Chapter 5

Scrollln
BASIC subprogram contained in SCROLLIN.BAS

Purpose:

Scrollin is a virtual field input routine that allows editing text that is
wider than the window showing on the screen.

Syntax:
CALL Scrollln(Edit$, Start%, Wide%, MaxLen%, Filter%, Ky%, EdClr%, _

Norma1Clr%)

Where:

Edit$ is the string to be edited, and may range from O to 32000
characters in length.

On entry, Start% specifies which character in Edit$ is to be placed
at the left edge of the edit window. On exit, Start% holds the
column where the cursor was when the field was exited.

Wide% is the width of the edit window.

MaxLen % is the maximum allowable length of the edited text.
MaxLen % must be at least as great as Wide%. If MaxLen % =
Wide% scrolling is disabled.

Filter% determines the type of text to be accepted by Scrollin, and
may be set to any of the following values:

0 All keys will be accepted
1 Integer characters
2 Integers, single/double precision characters only
3 User-defined
4 Converts all letters to upper case

Crescent Software, Inc. 5-51

I

Chapters QuickPak Professional

Ky% returns the ASCII code for the key used to exit the routine. If
an extended key was pressed, Ky% returns a negative value
corresponding to the key's extended code. If Escape is pressed,
Scrollln restores Edit$ to its original contents. If the left mouse
button is clicked outside of the edit window, Scrollln responds as if
Enter were pressed, but Ky% instead returns a value of 1000. The
following values are returned when their corresponding exit keys are
pressed.

Escape= 27
Enter= 13
Down Arrow = -80
Up Arrow = -72
PgUp = -73
PgDn = - 81

EdClr% is the color to use while editing, and is coded in the format
used by the various QuickPak Professional video routines.

Norma1Clr% is the color to use when editing is complete.

Comments:

If the length of the text is greater than the size of the edit window,
the text may be scrolled right or left using the standard cursor keys,
or with a mouse by holding the left mouse button down on either the
left- or right-most character in the edit window. All of the standard
editing keys are supported; in addition, Alt-C clears the field, and
Alt-R restores it to the original contents. Use BASIC'~ LOCATE
statement to position the left edge of the field.

The Filter argument specifies which set of characters are accepted,
based on three filter masks. The first two are defined within
Scrollln, using CONST strings named Filter!$ and Filter2$. You
indicate which to use by setting Filter% to 1 or 2. If Filter% is
assigned to 3, then Scrollln uses a filter mask that you define.
Simply define Filter3$ as shown at the start of the SCROLLIN .BAS
source file.

If you do not require a mouse for your application, the block of
mouse code in SCROLLIN .BAS can easily be removed. Simply
search for "MMM" and do as the comments indicate.

5-52 Crescent Software, Inc.

QuickPak Professional

Scrollln is demonstrated in the DEMOSCRL.BAS example
program.

Chapter 5

See COLORS.BAS for a description of the combined color method.

Crescent Software, Inc. 5-53

I

Chapter 5 QuickPak Professional

Spread
BASIC subprogram contained in SPREAD.BAS

Purpose:

Spread is a complete spreadsheet subprogram that may be called as
a "pop-up" from within a BASIC program. Spread automatically
saves the underlying screen and draws an attractive shadow, and it
may be used in the 25, 43, or 50 line screen modes.

Syntax:

CALL Spread(Wks$(), Format$(), ColumnWidths%(), Wide%, Rows%, Action%)

Where:

Wks$0 is a normal (not fixed-length) two-dimensional string array
that will hold the spreadsheet data being entered or edited. The size
to which Wks$ has been dimensioned determines the maximum
number of rows and columns that may be accessed.

Format$() is a two-dimensional table of formatting information for
the numeric cell values.

Column Widths%() is a one-dimensional array containing a list of
widths for each spreadsheet column.

Wide% is the total width of the spreadsheet window, and Rows% is
the window height.

Action% indicates how Spread is being invoked.

Comments:

Spread is explained in depth elsewhere in this manual, and a
complete demonstration is also provided in the DEMOSS .BAS
example program.

5-54 Crescent Software, Inc.

QuickPak Professional Chapter 5

Textln
BA SIC subprogram contained in TEXTIN. BAS

Purpose:

Textln provides the ability to enter or edit a text field in a BASIC
program. All of the standard editing keys are supported, plus Alt-C
clears the field, and Alt-R will restore it to the original contents.

Syntax:

CALL Textln(Text$, Max%, Num0nly%, Caps0n%, ExitCode%, Colr%)

Where:

Text$ is the text to be entered or edited, and Max% is the maximum
allowable length of the field.

NumOnly% indicates whether numeric input only is to be accepted
if non-zero. CapsOn% tells Textln to automatically capitalize all
incoming alphabetic characters if non-zero.

ExitCode% tells how editing was terminated, as shown below.

Colr% is the field color to be used, and it is packed into a single
byte containing both the foreground and background colors.

Comments:

ExitCode% lets your program know whether the user pressed Enter
to accept the field, the up arrow to go to the previous field, or
Escape.

ExitCode% = 0 Enter, Tab, or the down arrow key was pressed,
or the right arrow moved the cursor beyond the
end of the field, or the field was filled.

ExitCode% = 1 Shift-Tab or the up arrow key was pressed, or
the left arrow moved the cursor before the
beginning of the field.

ExitCode % = 2 Escape was pressed.

Crescent Software, Inc. 5-55

I

I

Chapter5 QuickPak Professional

One important point to be aware of is that Textln calls the CapNum
subprogram to display the current setting of the Cap and NumLock
keys. Therefore, any program that uses Textln must also load or
include CapNum.

Because Textln is written in BASIC, it is simple to add additional
exit codes or other features.

Textln is shown in context in the DEMOIN.BAS example program.

5-56 Crescent Software, Inc.

QuickPak Professional Chapters

VertMenu
BASIC subprogram contained in VERTMENU.BAS

Purpose:

VertMenu is a comprehensive menu subprogram with many
important capabilities including full support for a mouse. It always
saves the underlying screen, and draws an attractive shadow
automatically.

Syntax:

CALL VertMenu(Item$(), Choice%, MaxLen%,BoxBot%, Ky$, Action%, Cnf)

Where:

Item$O is a conventional (not fixed-length) string array containing
the list of menu choices and Choice% indicates which choice was
selected, and may also be pre-loaded to force a given choice to be
highlighted initially. Using a string of CHR$(196) characters tells
VertMenu to display a non-selectable separator for that entry.

MaxLen % is the maximum length of any menu choice, thus
establishing the menu width. Choices that are longer than
MaxLen% will be displayed truncated.

BoxBot% is the bottom screen line that the window is to extend to.
That is, if BoxBot% is set to twenty, then the bottom border of the
menu will be on line twenty. Notice that the upper left corner of the
menu is established by the current cursor location.

Ky$ holds the last key that was pressed by the user, Action% tells
VertMenu how it is being used, and Cnf is a special TYPE variable
that contains information about the host PC.

Comments:

VertMenu is explained in depth in the section entitled
"Multi-Tasking Menus", and a complete demonstration is provided
in the DEMOVERT.BAS example program.

Crescent Software, Inc. 5-57

I

I

Chapters QuickPak Professional

VertMenuT
BASIC subprogram contained in VERTMENT.BAS

Many people have asked us for a version of VertMenu that will
work with fixed-length string arrays. VertMenuT will do this, but
there is one important limitation inherent in the program - a
fixed-length string array may not be passed to a BASIC
subprogram. The only real solution is to create a TYPE array
comprised solely of a fixed-length string component, and then pass
the TYPE array to the subprogram.

While this does indeed work, it restricts the subprogram to
accepting an array of only that length. If you modify VertMenuT to
work with array elements of, say, 30 characters in length, you will
not be able to use the same subprogram with strings of any other
length. The example program DEMOVRTT.BAS uses a length of
twelve, and presents a list of file names from the current directory
for selection.

5-58 Crescent Software, Inc.

QuickPak Professional Chapter 5

YesNo
assembler subroutine contained in PRO.LIB

Purpose:

Y esNo provides a quick way to accept a Yes or No input.

Syntax:
CALL YesNo(YN$, Prompt$, ScanCode%, Norma1Color%, EditColor%, Row%, _

Column%)

Where:

YN$ is either a single blank space, or a default answer of "Y" or
"N".

Prompt$ is a message to be displayed immediately to the left of the
input box, much like BASIC's INPUT command. If Prompt$ is
null, then no prompt message is displayed.

ScanCode% tells how YesNo was terminated (see below).

Norma1Color% is the color to restore the field to when YesNo has
finished, and EditColor% is the color to use while the field is being
edited.

Row% and Column% indicate where on the screen the prompt
message and editing are to occur.

Comments:

As with most of the QuickPak Professional input routines, both the
foreground and background colors are combined into a single value.
The OneColor function may be used to calculate the correct color.

ScanCode% is returned holding either the ASCII value of the
terminating key, or a negative value to indicate an extended key.
This allows you to trap any Alt or function keys. For example, if
ScanCode% is set to 13 the Enter key was used to exit YesNo. If
ScanCode% is set to, say, -80, then the down arrow key was
,pressed.

Y esNo will operate on whatever screen page is currently active, and
is demonstrated in the DEMOCM.BAS example program.

Crescent Software, Inc. 5-59

I

Chapter 5 QuickPak Professional

YesNoB
BASIC subprogram contained in YESNO.BAS

Purpose:

Y esNoB provides a quick way to accept a Yes or No input.

Syntax:

CALL YesNoB(YN$, ExitCode%, Colr%)

Where:

YN$ is either null or a default "Y" or "N".

ExitCode% tells how editing was terminated, as shown below.

Colr% is the field color to be used, and it is packed into a single
byte containing both the foreground and background colors.

Comments:

ExitCode% lets your program know whether the user pressed Enter
to accept the field, the up arrow to go to the previous field, or
Escape.

ExitCode% = 0 Enter, Tab, or the down arrow key was pressed,
or the right arrow moved the cursor beyond the
end of the field, or the field was filled.

ExitCode% = 1 Shift-Tab or the up arrow key was pressed, or
the left arrow moved the cursor before the
beginning of the field.

ExitCode% = 2 Escape was pressed.

5-60 Crescent Software, Inc.

QuickPak Professional Chapter 5

One important point to be aware of is that YesNoB calls the
CapNum subprogram to display the current setting of the Cap and
NumLock keys. Therefore, any program that uses YesNoB must
also load or include CapNum.

Because YesNoB is written in BASIC, it is simple to add additional
exit codes or other features.

YesNoB is shown in context in the DEMOIN.BAS example
program.

Crescent Software, Inc. 5-61

I

Chapter6
Keyboard/Mouse Routines

I

I

QuickPak Professional Chapter 6

AltKey
assembler function contained in PRO.LIB

Purpose:

AltKey reports if the Alt key is currently depressed.

Syntax:

Active= AltKey%

Where:

Active receives -1 if the Alt key is currently down, or 0 if it is not.

Comments:

Because AltKey has been implemented as a function, it must be
declared before it may be used.

AltKey is designed to return -1 for a true value to also allow the
use of the BASIC NOT operator:

IF A ltKey% THEN

or

IF NOT AltKey% THEN

Crescent Software, Inc. 6-1

I

I

Chapter 6 QuickPak Professional

ButtonPress
assembler subroutine contained in PRO.LIB

Purpose:

ButtonPress will report how many times a specified mouse button
was pressed since the last time it was called. It also returns the X/Y
coordinates where the mouse cursor was located when that button
was last pressed.

Syntax:

CALL ButtonPress(Button%, Status%, Count%, X%, Y%)

Where:

Button% is the button of interest, with a 1 indicating button 1, 2
meaning button 2, and 3 for button 3 (if the mouse has a third
button).

Status% is the current button status, and has the same meaning as
the information returned by the GetCursor mouse routine.

Count% tells how many times the button has been pressed since
ButtonPress was last called. X% and Y% hold the mouse cursor
position at the time the button was pressed. Use the GetCursor
routine to determine the current mouse cursor location.

Comments:

6-2

ButtonPress is the only reasonable way to determine when the
mouse buttons are active and need attention. Though the GetCursor
routine will report the current button status, it would have to be
polled repeatedly in a loop.

A good example of implementing ButtonPress can be found in the
source code for both PullDown and VertMenu.

The comments that accompany the GetCursor routine provide an
explanation of interpreting the X and Y values that are returned.

Notice that unlike GetCursor, ButtonPress resets the button-press
counter to zero each time it is called.

Crescent Software, Inc.

QuickPak Professional Chapter 6

CapsLock
assembler function contained in PRO.LIB

Purpose:

CapsLock reports if the Caps lock key is currently depressed.

Syntax:

Active= Capslock%

Where:

Active receives -1 if the CapsLock key is currently down, or O if it
is not.

Comments:

Because CapsLock has been implemented as a function, it must be
declared before it may be used.

CapsLock is designed to return -1 for a true value to also allow the
use of the BASIC NOT operator:

IF Capslock% THEN

or

IF NOT Capslock% THEN .

Crescent Software, Inc. 6-3

I

Chapter 6 QuickPak Professional

CapsOff and CapsOn
assembler subroutines contained in PRO.LIB

Purpose:

CapsOff turns off the CapsLock key status, and CapsOn turns it on.

Syntax:

CALL CapsOff

or

CALL CapsOn

I

6-4 Crescent Software, Inc.

QuickPak Professional Chapter 6

ClearBuf
assembler subroutine contained in PRO.LIB

Purpose:

ClearBuf will quickly clear the keyboard of any key strokes that are
currently pending.

Syntax:

CALL ClearBuf

Comments:

The most common way to clear the keyboard buffer in a BASIC
program is to use an INKEY$ loop like this:

WHILE INKEY$ <> "": WEND

ClearBuf provides a simple and concise way to accomplish the same
action with the fewest code bytes.

Also see the related functions InStat and PeekBuf.

Crescent Software, Inc. 6-5

I

Chapter 6 QuickPak Professional

CtrlKey
assembler function contained in PRO.LIB

Purpose:

CtrlKey reports if the Ctrl key is currently depressed.

Syntax:
Active= Ctr1Key%

Where:

Active receives -1 if the Ctrl key is currently down, or 0 if it is not.

Comments:

6-6

Because CtrlKey has been implemented as a function, it must be
declared before it may be used.

CtrlKey is designed to return -1 for a true value to also allow the
use of the BASIC NOT operator:

IF Ctr1Key% THEN

or

IF NOT Ctr1Key% THEN

Crescent Software, Inc.

QuickPak Professional Chapter 6

Get Cursor
assembler subroutine contained in PRO.LIB

Purpose:

GetCursor reports the current location of the mouse cursor, and
which mouse buttons are currently depressed.

Syntax:
CALL GetCursor(X%, Y%, Button%)

Where:

X% and Y% return holding the current mouse cursor coordinates,
and Button% is bit coded to indicate which buttons are currently
down.

Comments:

The X % and Y % values returned depend in part on the number of
pixels that are available on the screen. Unfortunately, this is true
even in text mode.

As an example, if the mouse cursor is currently at the upper left
corner of the screen, both the X and Y values will be returned as
zero. However, if the cursor moves one character box to the right,
the X value will immediately become eight.

The same thing happens when the cursor is moved downward, in
which case the Y value suddenly jumps to eight. Thus, the
resolution of a 25-line text screen is considered (to the mouse
anyway) as being the same as that of a CGA display.

Running the short program below will illustrate this:

PRINT "Press a button to stop"
WHILE Button%= 0

WEND

CALL GetCursor(X%, Y%, Button%)
LOCATE 1, 1
PRINT X; Y

Crescent Software, Inc. 6-7

I

I

Chapter 6 QuickPak Professional

6-8

The 43-line text mode available with an EGA or VGA adapter is
handled similarly. But with the SO-line mode in the OS/2 DOS
compatibility box, the Y value is instead incremented in steps of 7.
In graphics mode the cursor position is reported as you would
expect, depending on the available resolution.

The button information is represented by bits in the Button% variable,
with bit O being on to indicate that button 1 is pressed, bit 1 for button
2, and so forth. The various bits may be easily isolated as shown
below:

CALL GetCursor(X%, Y%, Button%)
IF Button% AND l THEN PRINT "Button 1 is pressed"
IF Button% AND 2 THEN PRINT "Button 2 is pressed"
IF Button% AND 4 THEN PRINT "Button 3 is pressed"

Unlike the ButtonPress routine, GetCursor does not reset the count
of how many times the buttons have been pressed.

Crescent Software, Inc.

QuickPak Professional Chapter 6

GetCursorT
assembler subroutine contained in PRO.LIB

Purpose:

GetCursorT reports the current location of the mouse cursor, and
which mouse buttons are currently depressed.

Syntax:

CALL GetCursorT(Col%, Row%, Button%)

Where:

Col% and Row% return holding the current mouse coordinates, and
Button% is bit-coded to indicate which buttons are currently being
pressed.

Comments:

GetCursorT serves the same purpose as the original GetCursor
routine, except it returns the mouse cursor coordinates in terms of
rows and columns rather than pixels. The row and column
information are based at one. That is, if the mouse cursor is in the
upper left corner of the screen, GetCursorT will return Col% and
Row% equal to one, not zero.

Crescent Software, Inc. 6-9

I

Chapter 6 QuickPak Professional

Graf Cursor
assembler subroutine contained in PRO.LIB

Purpose:

GrafCursor greatly simplifies defining the shape of the mouse
cursor for use in graphics mode.

Syntax:

CALL GrafCursor(X%, Y%, Cursor$)

Where:

X% and Y% define the cursor "hot spot", and Cursor$ is either a
conventional or fixed-length string that contains the new cursor
shape.

Comments:

As with many of the mouse services that Microsoft has designed,
defining the shape of the mouse cursor is at best convoluted and
confusing.

The example in the MOUSE.BAS demonstration program shows
how GrafCursor can be used with a "pictorial" layout to quickly
visualize how the cursor will appear.

The hot spot indicates which pixel the mouse cursor is considered to
be on when in graphics mode. Even though the mouse cursor will
span several pixels at one time, only one point can be considered to
be the actual cursor location. Again, the example in MOUSE.BAS
shows this in context.

Also see GRAFCURS.BAS which expands on MOUSE.BAS to
show how custom graphics mouse cursor shapes can be defined for
EGA and VGA displays.

6-10 Crescent Software, Inc.

QuickPak Professional Chapter 6

HideCursor
assembler subroutine contained in PRO.LIB

Purpose:

HideCursor turns off the mouse cursor.

Syntax:

CALL HideCursor

Comments:

Any program that is to be "mouse aware" will need to turn on the
mouse cursor before expecting a user to access the mouse.
Likewise, it is only common courtesy to turn it off again before
returning them to the DOS prompt. One very important point to be
aware of regarding the HideCursor routine is how the current on
and off status is maintained internally by the mouse driver.

Unlike the normal text cursor that is turned on or off with the
BASIC LOCATE command, the mouse cursor keeps track of how
many times it was turned on or off. Thus, if you call HideCursor
twice in a row, you 'II have to call ShowCursor twice before it will
be visible again! However, having multiple calls to ShowCursor still
only requires a single call to HideCursor to turn off the mouse
cursor.

This behavior is one of the biggest problems programmers
encounter when attempting to add mouse support to a program.
Send your complaints directly to:

Bill Gates
Microsoft Corporation
16011 NE 36th Way
Box 97017
Redmond, WA 98073-9717

Fortunately, the InitMouse routine will reset everything back to
normal, though at the expense of losing all of the current mouse
settings.

Crescent Software, Inc. 6-11

I

I

Chapter 6 QuickPak Professional

InitMouse
assembler subroutine contained in PRO.LIB

Purpose:

InitMouse is used both to determine if a mouse is present in the host
PC, and to reset the mouse driver software to its default values.

Syntax:

CALL InitMouse(There%)

Where:

There% receives -1 if a mouse is present, or O if no mouse is
installed.

Comments:

Because InitMouse resets the mouse driver values (the mouse cursor
color, its travel range and sensitivity, etc.), it would probably be
called only once at the start of a program.

Understand that InitMouse doesn't actually detect the physical
presence of the mouse hardware. Rather, the mouse driver software
must also be installed before a mouse will be detected.

6-12 Crescent Software, Inc.

QuickPak Professional Chapter 6

InStat
assembler function contained in PRO.LIB

Purpose:

InStat returns the number of characters that are currently pending in
the keyboard buffer, but without removing them.

Syntax:

Count= lnStat%

Where:

Count receives the number of characters that are currently pending.

Comments:

Because InStat has been implemented as a function, it must be
declared before it may be used.

InStat is very valuable in situations where you need to see if a key
is present, but do not want to remove it from the keyboard buffer.
A good example would be when simulating multi-tasking in a
BASIC program.

Most menu programs just sit there waiting for a keystroke from the
user, which is fine as long as there's no other work to be done. But
if you would like to call a subprogram that reads a file or sorts an
array in the background, you could design the subprogram to
periodically take a look at the keyboard. Then, if it sees that a key
has been pressed, it would immediately return to the menu, and the
key would still be waiting there in the buff er.

Also see the related functions PeekBuf and ClearBuf.

Crescent Software, Inc. 6-13

I

Chapter 6 QuickPak Professional

Keyboard
assembler subroutine contained in PRO.LIB

Purpose:

Keyboard provides a continual display of the current Cap and
NumLock status, but without having to loop repeatedly to obtain the
information.

Syntax:

CALL Keyboard(Row%, Column%, Color!%, Color2%, Mode%)

Where:

Row% and Column% indicate where on the screen the status is to
be displayed.

Colorl % and Color2% tell Keyboard what colors to use when
removing and displaying the "CAP" and "NUM" messages
respectively.

Mode% is either 1 to install the Keyboard routine, or Oto remove it.

Comments:

The usual way to provide a continual display of the Cap and
NumLock status is to constantly peek at low memory, often while
the program is waiting for a key press. Keyboard instead intercepts
the keyboard hardware interrupt, thereby freeing the BASIC
program from doing any additional work.

While ON TIMER could also be used to periodically display the
Cap and NumLock status, most programmers prefer to avoid event
trapping at any cost. Event statements unfortunately cause a BASIC
program to be both larger and slower.

Keyboard may be installed more than once, with subsequent
installations simply to tell Keyboard to use a new location or set of
colors.

6-14 Crescent Software, Inc.

QuickPak Professional Chapter 6

Because interrupts are being redirected to the Keyboard subroutine,
it is imperative that you install and remove it correctly. Equally
important is ensuring that Keyboard is removed within any error
handling routines that may be present. We recommended that you
add Keyboard to a program only after it has been thoroughly tested
and debugged. If a program ends prematurely and Keyboard has not
been removed, a total crash of the system is guaranteed.

Neither Keyboard nor its companion program Clock will operate
correctly in the QuickBASIC 4 environment. Further, if both
Keyboard and Clock are being used in the same program, Keyboard
must be installed first and removed last.

A full demonstration of Keyboard is given in the DEM ORK.BAS
example program.

Crescent Software, Inc. 6-15

I

I

Chapter 6 QuickPak Professional

l{eyDown
assembler function contained in PRO.LIB

Purpose:

KeyDown reports if any keys are currently being pressed.

Syntax:

KeyisDown = KeyDown%

Where:

KeyisDown is set to -1 (True) if a key is currently being pressed, or
0 if no keys are pressed.

Comments:

Because KeyDown has been designed as a function, it must be
declared before it may be used. KeyDown must also be installed
before it will operate, and this is down by calling the
InstallKeyDown routine.

KeyDown is useful in a variety of situations. We designed it to
allow the Dialog routine to mimic the behavior of Microsoft's
dialog boxes, which act on the key pressed only after it has been
released. Like the WaitUp routine that waits in an endless loop
until all mouse buttons have been released, you could write a
similar BASIC subprogram for the keyboard using KeyDown:

SUB WaitKeyUp STATIC
DO
LOOP WHILE KeyDown%

END SUB

In order to detect when keys are pressed and released, KeyDown
takes over the keyboard interrupt. This is why it must be installed.
Key Down automatically removes itself from the interrupt chain
when your program ends.

6-16 Crescent Software, Inc.

QuickPak Professional Chapter 6

However, a bug in QBX (the QB editor that comes with BASIC 7
PDS) prevents the automatic de-installation from working correctly.
Therefore, you must call DeinstallKeyDown manually before ending
your program if you are using QBX. De-installing is not necessary
with QuickBASIC 4.0 or 4.5, nor with programs that are compiled
to .EXE files.

Note that when multiple keys are pressed (such as Alt-F), Keydown
returns -1 when Alt is first pressed. But as soon as either
combination key is released KeyDown returns 0.

See the KEYDOWN .BAS demonstration program for an example of
using Keydown.

Crescent Software, Inc. 6-17

I

Chapter 6 QuickPak Professional

Motion
assembler subroutine contained in PRO.LIB

Purpose:

Motion allows a program to establish the sensitivity of the mouse
cursor motion.

Syntax:

CALL Motion(Value%)

Where:

Value% is the desired sensitivity ranging between 1 and 32767,
with 1 being the most sensitive.

Comments:

Even though the mouse driver software allows setting the horizontal
and vertical sensitivity separately, Motion uses the same value for
both. This seems to be the most logical way to control a mouse,
while eliminating yet another passed parameter. If you absolutely
must be able to set these values independently, you should use the
generic Mouse routine provided with QuickPak Professional like
this:

CALL Mouse(15, 0, X%, Y%)

Where X % and Y % represent the sensitivity for the X and Y
coordinates respectively.

The stated upper range for the motion sensitivity is 32767, however
values beyond 100 or so are hopelessly insensitive.

You may be interested to know that Microsoft calls the unit of
cursor distance for the mouse a "Mickey".

6-18 Crescent Software, Inc.

QuickPak Professional Chapter 6

Mouse
assembler subroutine contained in PRO.LIB

Purpose:

Mouse provides access to all of the mouse services, and is the only
way to use those that are not provided in a simplified form with
QuickPak Professional.

Syntax:

CALL Mouse(AX%, BX%, CX%, DX%)

Where:

AX% is the number for the mouse service of interest, while BX%,
CX%, and DX% assign and return the processor's registers.

Comments:

Mouse provides access to all of the mouse services. Most of the
important ones are provided as a simplified call with QuickPak
Professional. But there may be occasions when you need a mouse
capability that we have not included.

Three important mouse services you may want to add to your
programs are those that size, save, and restore the current mouse
state. These are used extensively by the VertMenu subprogram to
let it query the mouse buttons, but not destroy the information that
is returned.

Similar to INKEY$, when ButtonPress calls the mouse driver
software, the very act of requesting the number of button presses
removes them from the internal "button buffer". If a button was
pressed outside of the range that VertMenu is interested in, it first
restores the mouse state, and then returns to the calling program. Of
course, VertMenu saves the mouse state just prior to each call to
ButtonPress.

Crescent Software, Inc. 6-19

I

Chapter 6 QuickPak Professional

Before the current mouse state can be saved, you must first ask the
mouse driver how many bytes will be needed. The mouse state of
course consists of more than just the button information. It also
includes the cursor color, the cursor boundaries, and all of the other
mouse parameters.

The number of bytes needed to save the current mouse state is
obtained with Mouse service number 21. Next, a string must be
assigned to a sufficient length to hold the information. Finally,
Service 22 is used to copy the state to the string.

CALL Mouse(21, Bytes%, 0, 0)
Storage$= SPACE$(Bytes%)
CALL Mouse(22, 0, 0, SADD(Storage$)

'request the state size
'make a string to hold it
'load the string

Restoring the mouse state again later is equally simple:

6-20

CALL Mouse(23, 0, 0, SADD(Storage$)
Storage$=""

'restore the state
'free up the memory

Crescent Software, Inc.

QuickPak Professional Chapter 6

MouseRange, 1, G, Gl
assembler routine contained in PRO.LIB

Purpose:

MouseRange will return a range number that tells where the mouse
cursor is located, based on an array of screen coordinates.

Syntax:

CALL MouseRange{SEG Array{Start), NumEls%, Row%, Col%, Button%,
RangeNum%)

Where:

Array(Start) is the first element in a special TYPE array, and
NumEls % is the number of elements in that array. Row% and
Col% return the current location of the mouse cursor, Button%
indicates which mouse button is currently depressed, and
RangeNum% holds the range within which the cursor is located.

Comments:

When writing a program that manages multiple windows at once, it
can be very tedious to calculate in which window the mouse cursor
is when a button has been pressed. MouseRange lets you create a
table of screen coordinates that define the boundaries of each
window, and it then does all of the searching to see within which
window the mouse cursor is located. It can therefore be used to
replace a call to GetCursor followed by many IF/ELSEIF or CASE
statements.

Before MouseRange may be called you must first define a TYPE
array, and dimension it to the number of windows that will be
active at one time. This is shown below.

TYPE Area
ULRow AS INTEGER
ULCol AS INTEGER
LRRow AS INTEGER
LRCo l AS INTEGER
Alias AS INTEGER

END TYPE
DIM Array(NumWindows) AS Area

Crescent Software, Inc. 6-21

I

I

Chapter 6 QuickPak Professional

It is up to your program to fill in the corner parameters for each
element in the array before calling MouseRange. The Alias portion
of each TYPE element lets you assign window numbers that are not
necessarily contiguous. For example, you could have five windows
numbered 1, 3, 12, 22, and 7. These are the numbers that would be
returned to you by MouseRange.

Setting an Alias parameter to -1 tells MouseRange to return the
physical window number. For example, if the mouse cursor was in
the range defined by Array(3), then RangeNum% would be set to 3.

Notice that ALIAS is a BASIC reserved word, and is used here for
explanation purposes only.

The windows may of course overlap each other, and the highest
window number that matches the mouse cursor location is the one
that will be reported. This logic assumes that as each new window
is opened it will be added to the next higher array element, and that
you are interested in the most recently opened wmdow in which the
mouse cursor is located.

These are four versions of MouseRange supplied with QuickPak
Professional, and all of them are set up and called the same way.
MouseRange accepts ranges of screen coordinates in row and
column units, and compares the current mouse position only when a
button is pressed. If a button has not been pressed RangeNum is
returned holding O; however, Row and Column will hold the current
mouse cursor location. When a mouse button has been pressed,
MouseRange compares the current mouse location with the passed
array of coordinates, and returns which range it falls in.
MouseRangeG works in the same way, but all parameters are given
and returned as pixels instead of rows and columns.

MouseRangel and MouseRangeGl are similar except they always
return the appropriate range value, regardless of whether or not a
mouse button is currently depressed. Note that these versions are
slightly slower due to the constant comparisons required.

MouseRange is demonstrated in the MRANGE.BAS example
program.

6-22 Crescent Software, Inc.

QuickPak Professional Chapter 6

MouseState
assembler routine contained in PRO. LIB

All mouse drivers provide a way for a program to retrieve the
current context of the mouse state. This includes the current mouse
location, shape, and the number of times each button has been
pressed. There may be situations where you want to save the
current mouse state, and then restore it again later. For example,
the QuickPak Professional PullDown menu program saves and
restores the state to allow it to operate in a polled mode.

When a program calls ButtonPress to obtain the button press history
for a given button, ButtonPress resets the button history counter.
Therefore, PullDown first saves the mouse state, and then checks
for button presses within its own active window. If a button was
pressed outside of the current menu window, PullDown restores the
mouse state and returns. This way another routine can detect and
act on those button presses. Otherwise, PullDown acts on that
button press.

Three routines are provided to save and restore the mouse state.
MBuffSize is a function that must be declared, and it returns the
size of the mouse state buffer. This information is needed to know
how large a string must be in order to receive the information the
mouse driver returns. MGetState and MSetState may then be used
to obtain and restore the current state. A typical session would be
as follows:

DECLARE FUNCTION MBuffSize%()
Buffer$= SPACE$(MBuffSize%)
CALL MGetState(Buffer$)

CALL MSetState(Buffer$)

Crescent Software, Inc.

'make a string
'load the current state
'do whatever is needed

'restore the state

6-23

I

Chapter 6 QuickPak Professional

MouseTrap
assembler subroutine contained in PRO.LIB

Purpose:

MouseTrap will establish the allowable range of movement for the
mouse cursor.

Syntax:

CALL MouseTrap(ULRow%, ULCol%, LRRow%, LRCol%)

Where:

ULRow% and ULCol % specify the upper left corner of the range,
and LRRow% and LRCol% indicate the bottom right boundary.

Comments:

MouseTrap is intended for use with the mouse text cursor, but in
any screen mode. This is why the coordinates are given in rows and
columns. The mouse services that trap the mouse cursor range
(hence the name) normally expect you to supply the boundaries in
pixels, even when the screen is in a text mode. (Ouch!)

MouseTrap accepts the row and column range you specify, and
converts it to the correct pixel values before calling the mouse
driver software. It will accommodate the 40 and 80 column modes
automatically, as well as 25, 43 or 50 lines.

Notice that when an EGA (or VGA) is using a high resolution
graphics screen and you have used WIDTH to set 43 or 50 text lines,
you must specify the vertical bounds in pixels using the generic
Mouse routine. You may prefer to use pixels in the graphics modes
anyway, as shown below:

CALL Mouse(Service%, 0, Min%, Max%)

Service% is either 8 to establish the vertical range, or 7 to set the
horizontal range, and Min% and Max% are the pixel numbers that
define the limits. Notice that the lowest possible values are 0, not 1,
and the highest value will depend on the current screen mode.

6-24 Crescent Software, Inc.

QuickPak Professional Chapter 6

Also see the discussion of mouse coordinates that accompanies the
GetCursor routine description.

Crescent Software, Inc. 6-25

I

I

Chapter 6 QuickPak Professional

NumLock
assembler function contained in PRO.LIB

Purpose:

NumLock will quickly tell if the NumLock key is currently
depressed.

Syntax:

Active= Numlock%

Where:

Active receives -1 if the NumLock key is currently down, or O if it
is not.

Comments:

Because NumLock has been implemented as a function, it must be
declared before it may be used.

NumLock is designed to return -1 for a true value to allow the use
of the BASIC NOT operator:

IF Numlock% THEN

or

IF NOT Numlock% THEN

6-26 Crescent Software, Inc.

QuickPak Professional Chapter 6

NumOff and NumOn
assembler subroutines contained in PRO.LIB

Purpose:

NumOff turns off the NumLock key status, and NumOn turns it on.

Syntax:

CALL NumOff

or

CALL NumOn

I

Crescent Software, Inc. 6-27

I

Chapter 6 QuickPak Professional

PeekBuf
assembler function contained in PRO.LIB

Purpose:

PeekBuf provides a handy way to determine what key if any is the
next one pending in the keyboard buffer, without actually removing
it as INKEY$ does.

Syntax:

Char= PeekBuf%

Where:

Char receives the ASCII value of the pending key if it is a normal
key, 0 if no keys are pending at all, or a negative value representing
an extended key's scan code.

Comments:

Because PeekBuf has been implemented as a function, it must be
declared before it may be used.

PeekBuf is very valuable in situations where you need to know if a
key is present and also which one, but do not want to physically
remove it from the keyboard buffer.

Also see the related functions InStat and ClearBuf.

6-28 Crescent Software, Inc.

QuickPak Professional Chapter 6

RptKey
assembler subroutine contained in PRO.LIB

Purpose:

RptKey works much like BASIC's INKEY$, however it also returns
the number of times an Alt, Ctrl, or Shifted key has been pressed.

Syntax:

CALL RptKey(Char%, Count%)

Where:

Char% is the ASCII value for a normal key, or the scan code for an
extended key if Count% is not zero.

Count% is the number of times the key was pressed before the Alt,
Ctrl, or Shift key was released.

Comments:

RptKey was inspired by the way that Borland's SideKick handles
the PgUp and PgDn keys. Rather than attempt to repeatedly redraw
the screen when these keys are held down, it instead waits until the
key is finally released, and refreshes the screen only once.

Understand that RptKey works only with keys that are used in
combination with Alt, Ctrl, or Shift. However, it is quite handy in
those cases.

Crescent Software, Inc. 6-29

I

I

Chapter 6 QuickPak Professional

ScrlLock
assembler function contained in PRO.LIB

Purpose:

ScrlLock reports if the Scroll lock key is currently depressed.

Syntax:

Active= Scrllock%

Where:

Active receives -1 if the Scroll lock key is currently active, or O if
it is not.

Comments:

Because ScrlLock has been implemented as a function, it must be
declared before it may be used.

ScrlLock is designed to return -1 for a true value to also allow the
use of the BASIC NOT operator:

IF Scrllock% THEN .

or

IF NOT Scrllock% THEN

6-30 Crescent Software, Inc.

QuickPak Professional Chapter 6

Set Cursor
assembler subroutine contained in PRO.LIB

Purpose:

SetCursor provides a simple way to set a new location for the
mouse cursor.

Syntax:

CALL SetCursor(X%, Y%)

Where:

X% and Y% represent the new horizontal and vertical positions
respectively.

Comments:

The valid X and Y coordinates you specify will depend on the
current screen mode. For example, on a CGA graphics screen 1,
the acceptable range would be between O and 319 for X % , and O to
199 for Y%.

Also see the comments and complaints about the mouse cursor
coordinates in the sections that describe the GetCursor and
HideCursor routines.

Crescent Software, Inc. 6-31

I

I

Chapter 6 QuickPak Professional

ShiftKey
assembler function contained in PRO.LIB

Purpose:

ShiftKey reports if either Shift key is currently depressed.

Syntax:

Active= ShiftKey%

Where:

Active receives -1 if either Shift key is currently down, or O if
neither is.

Comments:

Because ShiftKey has been implemented as a function, it must be
declared before it may be used.

ShiftKey is designed to return -1 for a true value to also allow the
use of the BASIC NOT operator:

IF ShiftKey% THEN .

or

IF NOT ShiftKey% THEN .

6-32 Crescent Software, Inc.

QuickPak Professional Chapter 6

ShowCursor
assembler subroutine contained in PRO.LIB

Purpose:

ShowCursor turns the mouse cursor on making it visible.

Syntax:
CALL ShowCursor

Comments:

For more information, see the comments and complaints that
accompany the companion routine HideCursor.

Crescent Software, Inc. 6-33

I

I

Chapter 6 QuickPak Professional

Stutmuf
assembler subroutine contained in PRO.LIB

Purpose:

StuffBuf will insert a string into the keyboard buffer as if it had
been entered at the keyboard manually.

Syntax:

CALL StuffBuf(X$)

Where:

X$ is a string containing up to fifteen keystrokes.

Comments:

StuffBuf is the key to many feats of seemingly magical
programming. For example, it is the only way that a BASIC
program can be coerced into running a . COM program or batch
file. It could also be used just before ending a program to feed
keystrokes in a subsequent application:

CALL StuffBuf("l23" + CHR$(13) + CHR$(13) + "/FR")
END

When this program ends, it will start Lotus 123, bypass the opening
title screen, and obtain a list of the available worksheets
automatically.

The real beauty of StuffBuf, though, is being able to create and run
a batch file. In fact, it is an important component in our
QuickMENU program.

Of course, SHELL can be used to run a batch file temporarily, but
that much less memory would be available to any programs the
batch file runs. Further, some networks do not allow SHELL, and
this is the only way it can be done.

6-34 Crescent Software, Inc.

QuickPak Professional Chapter 6

Stufffiuf is used to advantage in the QuickPak Professional
spreadsheet program, where a key must be examined to see if the
"LABEL" or "VALUE" indicator should be displayed. Once the
key has been accepted, it is then placed back into the keyboard
buffer where the Editor routine can use it too.

Stufffiuf allows both normal and extended keystrokes to be placed
into the keyboard buffer. The example below shows how to specify
the characters "ABC" followed by the Fl function key:

CALL StuffBuf("ABC" + CHR$(0) + CHR$(59))

It is imperative that no more than fifteen keystrokes be specified
when using Stufffiuf. However, extended keys that are preceded
with a CHR$(0) count as only one keystroke.

Crescent Software, Inc. 6-35

I

I

Chapter 6 QuickPak Professional

TextCursor
assembler subroutine contained in PRO.LIB

Purpose:

TextCursor provides an easy way to initialize the mouse cursor in
text mode, and define its color.

Syntax:

CALL TextCursor(FG%, BG%)

Where:

PG% and BG% indicate the colors to be used.

Comments:

The Microsoft mouse driver software always displays the cursor
when the ShowCursor routine is called and the screen is in text
mode. However, some of the "clone" mouse drivers do not. To be
sure that the mouse cursor will be displayed, call TextCursor once
at the beginning of your program. This is not needed if the program
is operating in a graphics mode.

Besides allowing you to initialize the mouse text cursor, the
TextCursor routine has a few other interesting capabilities as well.
Normally, defining the text cursor color is at best an exercise in
frustration. For example, the Microsoft Mouse Programmer's
Reference Guide devotes four pages to charts and examples, just to
explain how the color system works. If you don't have a copy of
this otherwise useful book, trust me, it is very confusing.

TextCursor greatly simplifies this, and it allows you to set new
colors in a variety of ways. For example, if you use O for FG% and
4 for BG%, then when the mouse cursor passes over a character on
the screen, the character will be displayed in black on a red
background. This is the color scheme used by the QuickBASIC
editor.

6-36 Crescent Software, Inc.

QuickPak Professional Chapter 6

Any other color combination will be drawn as you specify, though
understand that the mouse cursor color is really the background
variable. The foreground value merely indicates what color the text
is to become when the cursor is on it.

But TextCursor also takes one of two possible codes for either the
foreground, the background, or both. If either color parameter is set
to -1, then you are telling TextCursor to maintain that portion
(foreground or background) of the current character color when the
mouse cursor passes over it. Of course, if both FG% and BG% are
set to -1, you '11 never see the cursor.

When either parameter is assigned to -2, then the character's
foreground or background color will become "inverted" as the
mouse cursor passes over it. For example, White will become
Black, Green turns to Magenta, and Blue becomes Brown.

Crescent Software, Inc. 6-37

I

Chapter 6 QuickPak Professional

WaitKey
assembler subroutine or function contained in PRO.LIB

Purpose:

WaitKey first clears the keyboard buffer of any keys that may be
pending, and then waits until a key is pressed.

Syntax:

CALL WaitKey 'if declared as a subprogram

or

X = Wa itKey% 'if declared as a function

Where:

If WaitKey has been declared as a function, X will receive either
the ASCII value for the key that was pressed, or a negative number
representing an extended key.

Comments:

The usual way to pause for a key press is with an empty INKEY$
loop, such as:

WHILE INKEY$ = "": WEND

However, when you are asking a user to acknowledge an error it is
generally a good idea to ensure that a stray key stroke waiting in the
keyboard buffer is not inadvertently accepted as a confirmation.
This further complicates the necessary code:

WHILE INKEY$ <>"":WEND
WHILE INKEY$ ="":WEND

'clear any pending key strokes
'wait for a key

WaitKey simplifies this by performing both operations in a single
routine. If WaitKey is declared as a subprogram, calling it will
cause the PC to pause until a key is pressed. If it has been declared
as a function, then the key that was pressed will also be available
for examination by your program.

6-38 Crescent Software, Inc.

QuickPak Professional Chapter 6

WaitScan
assembler function contained in PRO.LIB

Purpose:

WaitScan waits for any key to be pressed, and then returns the
actual keyboard scan code for that key.

Syntax:

Keycode = WaitScan%

Where:

KeyCode receives the scan code for the key that was pressed,
including otherwise illegal keys such as "5" on the number pad, or
the Alt key by itself.

Comments:

Because WaitScan has been designed as a function, it must be
declared before it may be used.

We do not recommend using WaitScan for several reasons;
however, a number of customers have asked for it. One problem
with WaitScan is that different keyboards produce different scan
codes for the same key. For example, the original IBM PC
keyboard uses different codes than the enhanced (AT style)
keyboard, which in turn is different from the keyboards provided
with the Tandy 1000 series of computers.

Another problem is that WaitScan is not compatible with SideKick.
Because SideKick "steals" the keyboard interrupt even after it has
been loaded, there is simply no way to make WaitScan work
correctly in that case.

WaitScan operates by first installing itself in the keyboard interrupt
chain, and then waits for a key to be pressed. After remembering
the scan code for the key, the original keyboard interrupt is
reinstated.

Crescent Software, Inc. 6-39

I

I

Chapter 6 QuickPak Professional

WaitUp
assembler subroutine contained in PRO.LIB

Purpose:

WaitUp halts a program's execution until no mouse buttons are
being depressed.

Syntax:

Ca 11 Wa itUp

Comments:

WaitUp merely waits in an endless loop until no mouse buttons are
being pressed. This is similar to waiting in an INK.BY$ loop until
there are no keys still pending in the keyboard buffer. Of course,
WaitUp returns immediately if no mouse is installed.

WaitUp is useful in those situations where clicking on a choice
invokes another routine that also polls for mouse button presses.
To avoid having the subsequently called routine act on the earlier
presses, it is necessary to pause until all buttons are released.

A call to WaitUp creates only 5 bytes of compiled code, which is
much more efficient than the equivalent BASIC loop shown below:

6-40

DO
Call GetCursor(X%, Y%, Button%)

LOOP WHILE Button%

Crescent Software, Inc.

I

Chapter 7
Miscellaneous Routines

I

QuickPak Professional Chapter 7

AddUSI

assembler function contained in PRO.LIB

Purpose:

AddUSI adds two integers on an unsigned basis, without creating an
overflow error if the total exceeds 32767.

Syntax:
Sum= AddUSI%(X%, Y%)

Where:

X % and Y % are the integers to be added, and Sum% receives the
result.

Comments:

Because AddUSI has been designed as a function, it must be
declared before it may be used.

In Microsoft BASIC, integer numbers and variables may range from
-32768 to 32767, which is a total of 65536 possible values.
However, assembler routines can optionally consider this same
range of values as spanning from Oto 65535. Therefore, a
variable's address that is greater than 32767 will be reported by
BASIC's VARPTR as a negative value. This behavior can cause
problems when addresses that may exceed 32767 are being
manipulated. For example, if a TYPE variable begins at address
32765 and 10 is added to access a portion of the TYPE,
QuickBASIC will create an Overflow error.

AddUSI simply adds the two values in assembly language, which of
course does not generate errors. Even if the result exceed 65535,
the adding will merely "wrap" around and pass zero. AddUSI is
invaluable in those situations where BASIC might create an error
even when the values are legitimate.

Crescent Software, Inc. 7-1

I

I

Chapter 7 QuickPak Professional

ASCII Chart
BASIC subprogram contained in ASCCHART.BAS

Purpose:

ASCIIChart is meant to be used as a pop-up utility in your
programs. When called it saves the underlying screen, and accepts
the up and down arrow keys, the PgUp and PgDn keys, or Escape
to exit.

Syntax:

CALL ASCl!Chart(ULRow%, ULCol%, Height%)

Where:

ULRow% and ULCol % tell where to locate the display, and
Height% specifies how many rows it is to occupy.

Comments:

7-2

ASCIIChart adjusts the way PgUp and PgDn work to accommodate
the current height automatically. As shipped, the box is drawn in
yellow on red, and the characters are bright white on red. The
colors are defined at the very beginning of the source code, and
may be easily changed. Run the COLORS.BAS program to see a
list of the possible color combinations.

ASCIIChart is shown in context in the DEMOPOP .BAS example
program.

Crescent Software, Inc.

QuickPak Professional Chapter 7

BCopy
assembler subroutine contained in PRO.LIB

Purpose:

BCopy will copy a block of memory (up to 64K in size) to a new
location.

Syntax:
CALL BCopy(FromSeg%, FromAddr%, ToSeg%, ToAddr%, NumBytes%, _

Direction%)

Where:

FromSeg% and FromAddr% indicate the source location of the
block, and ToSeg% and ToAddr% tell where to copy it to.
NumBytes% is, well, you can figure that one out. Direction% is
either O to copy in the forward direction, or -1 to copy backwards.

Comments:

BCopy is useful in a variety of situations, for example if you need
to make a copy of an array or duplicate a range of elements.

The number of bytes may be up to 65535, though you will have to
use a long integer (or a negative number) to specify a value greater
than 32767.

BCopy could also be used to swap strings in and out of a dynamic
array in far memory to conserve string space, as shown below.

X$ = "This is a test"
L% = LEN(X$)
DIM A%(L% / 2)
CALL BCopy(GetDS%, SADD(X$),

'make a test string
'remember its length
'make an array to hold it

VARSEG(A%(0)), VARPTR(A%(0)), L%, 0)

N$ = SPACE$(L%) 'make a new string
CALL BCopy(VARSEG(A%(0)), VARPTR(A%(0)), GetDS%, SADD(N$), L%, 0)
PRINT N$ 'show that it worked

Crescent Software, Inc. 7-3

I

I

Chapter 7 QuickPak Professional

7-4

Here we're using the QuickPak Professional GetDS % function
along with BASIC's SADD to locate the string in near memory, and
V ARSEG and V ARPTR to find where the array is in far memory.
BCopy may then be used both to copy the string to the array, as
well as back again when the string is needed.

You could also use V ARSEG instead of GetDS % to specify the
segment for any type near data. However, if you are copying to or
from a string using BASIC PDS far strings, you must instead use
SSEG.

Crescent Software, Inc.

QuickPak Professional Chapter 7

BCopyT
assembler subroutine contained in PRO.LIB

Purpose:

BCopyT will copy one or more elements in a TYPE array to
another array, or to any location in memory. Alternately, BCopyT
can be used to move any contiguous block of memory, even if the
number of bytes exceeds 65536.

Syntax:

CALL BCopyT(SEG FromEl, SEG ToEl, ElSize%, NumE1s%)

or

CALL BCopyT(BYVAL FromSeg%, BYVAL FromAdr%, BYVAL ToSeg%,
BYVAL ToAdr%, NumBytes%, 1) -

Where:

FromEl is the starting element of the source array and ToEl is the
starting element in the destination array. El Size% is the size of each
element in bytes, or a special code (see below). NumEls% is the
number of elements to be copied.

With the alternate call form, FromSeg%, FromAdr%, ToSeg%, and
ToAdr% define the source and destination segments and addresses.
NumBytes % then tells how many bytes are to be copied.

Comments:

Where the original BCopy routine is intended for copying a block of
memory up to 64K in length, BCopyT does not have that limitation.
BCopyT is also designed to simplify the calling syntax when TYPE
variables and array elements are being moved.

Crescent Software, Inc. 7-5

I

I

Chapter 7 QuickPak Professional

7-6

The first syntax shown above is for copying one or more elements
in a numeric or TYPE array, while the second would be used for
copying any contiguous block of memory. The actual number of
bytes to copy is calculated within BCopyT by multiplying E1Size%
times NumEls % . If you intend to copy 32K bytes or less (32768),
simply set E1Size% to the number of bytes, and use 1 for
NumEls%. To copy, say, 128K, you could set E1Size% to 32768
and use 4 for NumEls % . Any similar combination will also work.

BCopyT also recognizes the special codes used by the various
TYPE sort routines for ElSize % , as shown in the table below.

-1
-2
-3
-4
+n

2-byte integer
4-byte long integer
4-byte single precision
8-byte double precision
TYPE variable of length n

}these two are the same,
} and are interchangeable

Because this routine must be able to work with any type of variable,
you should use the AS ANY option when declaring it:

DECLARE SUB BCopyT(SEG FromEl AS ANY, SEG ToEl AS ANY,
E1Size%, NumE1s%)

If you intend to use both syntax forms in the same program, then
you must not declare it at all.

Crescent Software, Inc.

QuickPak Professional Chapter 7

BLPrint
assembler subroutine contained in PRO.LIB

Purpose:

BLPrint is an LPRINT substitute that eliminates the need for ON
ERROR in case the printer is off line, or becomes unavailable
during printing.

Syntax:

CALL BLPrint(LPTNumber%, X$, ErrCount%)

Where:

LPTNumber% is either 1, 2, or 3 to indicate which parallel printer
to use, and X$ is the string to be printed. ErrCount% reports if the
string was printed without error. If an error occurs, ErrCount%
instead reports how many characters were successfully printed.

Comments:

Even though the PRNReady routine will report if a printer is ready
at the time it is called, it does not prevent against an error caused
by the printer running out of paper, or being placed off-line in the
middle of a job.

Because BLPrint goes directly to the PC's BIOS, BASIC does not
get a chance to add a carriage return or line feed to the string. You
must do this in your BASIC program, as shown below. However,
this also provides you with greater control over how the text is
printed.

CALL BLPrint(l, X$ + CHR$(13) + CHR$(10), ErrCount%)

For example, if you omit the CHR$(10) line feed, the print head
will be returned to the beginning of the same line, without
advancing to the next one. This lets you overstrike characters or
easily perform underlining and bold printing, without having to
know those codes for a particular printer.

Crescent Software, Inc. 7-7

I

I

Chapter 7 QuickPak Professional

7-8

If the entire line was printed successfully, BLPrint returns -1 as a
status code. Any other value indicates the number of characters that
were actually printed, which allows you to resume printing at the
correct place.

In the tests we performed, most printers accepted either the entire
line or nothing at all. That is, deselecting the printer in the middle
of a line was not detected until the line was finished. However,
because some printers (most notably the Hewlett-Packard LaserJet)
do not work this way, you should use RIGHT$ as shown in the
BLPRINT .BAS example program in case only part of the line was
printed.

Crescent Software, Inc.

QuickPak Professional Chapter 7

Cale
BA SIC subprogram contained in CAL C. BAS

Purpose:

Cale provides a handy pop-up calculator that can be added to your
BASIC programs.

Syntax:

CALL Calc(ULRow%, ULCol%, FG%, BG%)

Where:

ULRow% and ULCol % tell where the upper-left corner of the
calculator is to be located, and FG% and BG% are the foreground
and background colors to use.

Comments:

Besides its calculating abilities, Cale can also send its output to a
printer. Instructions to begin printing are on the screen, so no
additional training is required for those people who are using your
program.

Eighteen lines are required on the screen, so be sure to take that
into account when locating the calculator display. Of course, Cale
works equally well in the 43 or 50 line screen modes available with
an EGA and VGA display adapter.

You may also consider using the NumOn routine just prior to
calling Cale, to allow the operator to use the keys on the number
pad. Of course, you should also call NumOff when they are
finished.

Cale is shown in context in the DEMOPOP .BAS example program.

Crescent Software, Inc. 7-9

I

I

Chapter 7 QuickPak Professional

Calendar
BASIC subprogram contained in CALENDAR.BAS

Purpose:

Calendar is a pop-up calendar that will display any month of any
year.

Syntax:

CALL Calendar(Month%, Day%, Year%, ULRow%, ULCol%, Color!%,
Color2%, Action%)

Where:

Month%, Day%, and Year% tell Calendar what month to display
and what day to highlight, and ULRow% and ULCol % specify the
upper left corner of the window.

Colorl % controls the border color, and Color2% is for the rest of
the display.

Action% is either set to 1 to display the calendar, or O to remove it
and restore the original underlying screen.

Comments:

Calendar highlights the specified day by reversing the foreground
and background components of Color2 % . If you do not want any
day to be highlighted, set Day% to O before calling Calendar.

Calendar is shown in context in the DEMOPOP .BAS example
program. Also, see the COLORS.BAS program description for a
table of color combinations.

7-10 Crescent Software, Inc.

QuickPak Professional Chapter 7

Chime
assembler subroutine contained in PRO.LIB

Purpose:

Chime provides five different types of beep tones, and five short
attention-getting trill sounds.

Syntax:

CALL Chime(Number%)

Where:

Number% is between 1 and 10.

Comments:

When someone using your program presses the wrong key or is
about to overwrite a file, you probably want to notify them with a
sound as well as a warning message. Many programmers use the
BEEP statement for this purpose. While BEEP is certainly
adequate, it is admittedly a rather boring sound.

SOUND and PLAY allow nearly any combination of tones,
however using either adds considerably to size of a program. In a
test program compiled by QuickBASIC 4.5 using a single SOUND
statement increased the code size by 1 lK, while PLAY added a
whopping 14.5K. Chime offers a variety of short sounds, but adds
less than two hundred bytes to your program.

The only real difference between the sounds created by Chime and
those produced by PLAY or SOUND is that tones are played in the
"foreground" only. Where BASIC's PLAY and SOUND return to
your program immediately and continue playing the notes in the
background, Chime waits until the tones have completed before it
returns.

The tone sequences used by Chime are stored in a table which is
kept in the code segment. Storing data in the code segment prevents
it from stealing string space from your programs. The table is
organized such that it is easy to modify or expand, as shown in the
comments in the assembler source code.

Chime is demonstrated in the QPSOUND .BAS example program.

Crescent Software, Inc. 7-11

I

I

Chapter 7 QuickPak Professional

Clock and Clock24
assembler subroutines contained in PRO.LIB

Purpose:

Clock provides a continual display of the current time, but without
having to loop repeatedly in the BASIC program. Clock24 is
identical, except it displays the time using the 24-hour military
format.

Syntax:

CALL Clock(Row%, Column%, Colr%, Mode%)

Where:

Row% and Column% indicate where on the screen the time is to be
displayed, Colr% tells Clock what color to use, and Mode% is
either 1 to install the routine, or O to remove it.

Comments:

The usual way to provide a continual display of the time is to
constantly print it in a loop, often while the program is waiting for a
key press. Clock instead intercepts the timer hardware interrupt,
thereby freeing the BASIC program from doing any additional work.

While ON TIMER could also be used, most programmers prefer to
avoid event trapping at any cost, because those statements cause a
program to be both larger and slower.

Clock may be installed more than once, with subsequent
installations simply to establish a new location or color.

Because interrupts are being redirected to the Clock routine, it is
imperative that you install and remove it correctly. Equally
important is ensuring that Clock is removed within any error
handling routines that may be present.

We recommended that you add Clock to your program only after it
has been thoroughly tested and debugged. If a program ends
prematurely and Clock has not been removed, a total crash of the
system is guaranteed.

7-12 Crescent Software, Inc.

QuickPak Professional Chapter 7

If both Clock and Keyboard are being used in the same program,
Clock must be installed last and removed first.

One important warning you should be aware of is when chaining
from a program that uses Clock. It is essential to add a brief delay
after uninstalling Clock, and before issuing the CHAIN command.
Otherwise, the chained-to program may overwrite the clock routine
before it has released the timer interrupt. The following code is
recommended:

CALL Clock(Row%, Column%, Colr%, 0)
CALL Pause (1)
CHAIN "Program"

Also see the COLORS.BAS program description for a table of color
combinations.

A complete demonstration of Clock is given in the DEMORK.BAS
example program.

Crescent Software, Inc. 7-13

I

I

Chapter 7 QuickPak Professional

Compare
assembler function contained in PRO.LIB

Purpose:

Compare will compare any two blocks of memory, and report if
they are the same.

Syntax:

Same= Compare%(Seg1%, Adr1%, Seg2%, Adr2%, Num8ytes%)

Where:

Segl % and Adrl % tell where the first block is located, and Seg2%
and Adr2 % point to the second. NumBytes % is either the number
of bytes to be compared, or a special code indicating a type of
variable (see below). Same then receives -1 if the two blocks are
identical, or O if they are not.

Comments:

Because Compare has been designed as a function, it must be
declared before it may be used.

Not unlike AddUSI, Compare was designed to serve a very special,
but important purpose. Because the KeySort subprogram must be
able to work with any arrangement of a TYPE array, it is
mandatory that the element comparisons be performed by examining
memory. For example, we couldn't use something like:

IF Array(X).StringPart = Array(X + 1).StringPart

The whole point of a TYPE array is that the programmer can decide
how it is to be organized. But BASIC doesn't provide a way to get
at individual members of a TYPE variable or array element, other
than by specifying its name. Thus, Compare provides an easy
solution to the problem.

7-14 Crescent Software, Inc.

QuickPak Professional Chapter 7

However, there are no doubt other, similar situations where
Compare could be useful. For example, to see if a block of
elements in one array is the same as those in a second one.

NumBytes % may also be coded using the same system as the
QuickPak Professional sort routines:

-1
-2
-3
-4
+n

2-byte integer
4-byte long integer
4-byte single precision
8-byte double precision

} these are the same and
} are interchangeable

n-byte fixed-length string or any block of data

Crescent Software, Inc. 7-15

I

I

Chapter 7 QuickPak Professional

CompareT
assembler function contained in PRO.LIB

Purpose:

CompareT will compare any two TYPE variables, and report if they
are the same.

Syntax:

Same= CompareT%(SEG Typel, SEG Type2, NumBytes%)

Where:

Typel and Type2 are two TYPE variables or elements in a TYPE
array, and NumBytes% indicates their length in bytes. Same then
receives either -1 if they are the same, or zero if they are not.

Comments:

Because CompareT has been designed as a function, it must be
declared before it may be used.

Even though QuickBASIC will allow you to assign one TYPE
variable to another or exchange them via the SW AP statement, it is
not possible to simply compare them. For example, either of the
statements below will result in an error message:

IF Typel = Type2 THEN.

or

IF Typel <> Type2 THEN

Before CompareT, the only solution was to compare each
component of the TYPE individually:

IF Typl.A = Typ2.A AND Typl.B = Typ2.B AND Typl.C = Typ2.C AND ...

This quickly becomes tedious when there are many components to
each TYPE variable. Many individual comparisons also create a lot
of wasted code that takes an undue amount of time to execute.

7-16 Crescent Software, Inc.

QuickPak Professional Chapter 7

CompareT is modeled after the more generalized Compare routine,
but it is designed to be simpler to use when comparing two TYPE
variables.

Notice that when declaring CompareT you must use the "AS ANY"
option so QuickBASIC will let you pass it any type of variable:

DECLARE FUNCTION CompareT%(SEG X AS ANY, SEG Y AS ANY, NumBytes%)

Also notice that once the function has been declared using SEG, it
is not necessary to use SEG later each time CompareT is used.

Crescent Software, Inc. 7-17

I

I

Chapter 7 QuickPak Professional

Date2Day
BASIC function contained in DATE2DAY.BAS

Purpose:

Date2Day accepts an incoming date string, and returns the
appropriate day of the week (1 - 7).

Syntax:

Day= Date2Day%(D$)

Where:

D$ is a string such as "MMDDYY", "MM-DD-YYYY", and so
forth, and Day receives a value corresponding to the day of the
week.

Comments:

Because Date2Day has been designed as a function, it must be
declared before it may be used.

Also see the related BASIC function Num2Day, that instead accepts
the incoming date as an integer.

7-18 Crescent Software, Inc.

QuickPak Professional Chapter 7

Date2Num
assembler function contained in PRO.LIB

Purpose:

Date2Num converts a date in string form to an equivalent integer
variable.

Syntax:

Days= Date2Num%(D$)

Where:

D$ is a date in the form of "MMDDYY" or "MM-DD-YY" or
"MM/DD/YYYY", or any such combination, and Days receives the
number of days before or after 12-31-1979.

Comments:

Because Date2Num has been designed as a function, it must be
declared before it may be used.

Date2Num is a very powerful routine with two important uses.
Besides allowing what would otherwise be an eight character string
to be packed to only two bytes, it also provides an easy way to
perform date arithmetic.

Date2Num will operate on any date that is within the range
01-01-1900 to 11-17-2065. Invalid dates and dates that fall outside
of that range will return -32768 to indicate an error.

Once a date has been converted to the equivalent integer value, you
may add or subtract a number of days, and then use the companion
function Num2Date to convert the result. The example below shows
this in context:

D$ = "09-17-88"
Start%= Date2Num%(D$)
Later%= Start%+ 30
After30$ = Num2Date$(Later%)
PRINT "Thirty days after"; D$; " is"; After30$

Crescent Software, Inc. 7-19

I

Chapter 7 QuickPak Professional

Because Date2Num and Num2Date are set up as functions they may
also be used within a print statement directly, along with optional
calculations:

PRINT "30 days after"; D$; " is " Num2Date$(Start% + 30)

Date2Num and Num2Date are also useful for verifying if a given
date is valid, which eliminates tedious calculations that you would
have to perform to take possible leap years into consideration.

The only requirement for the date validation example below is that
the original date must be in the form "MM-DD-YYYY", because
this is the format returned by Num2Date.

INPUT "Enter a date in MM-DD-YYYY form ", D$
Oat%= Date2Num%(D$)
IF Num2Date$(Dat%) = D$ THEN

PRINT D$" is a good date!"
ELSE

PRINT "Please try again."
END IF

What we are doing here is asking for an original date, and then
converting it to an equivalent number. If after converting it back to
a string again we have the same date that we started with, then the
date was valid.

Understand that while days before 12-31-1979 are returned by
Date2Num as negative values, adding and subtracting will still be
performed correctly.

Date2Num is demonstrated in the DEMODATE.BAS example
program.

Also see the companion function Num2Date.

7-20 Crescent Software, Inc.

QuickPak Professional Chapter 7

DayName
assembler function contained in PRO.LIB

Purpose:

DayName accepts an integer value between 1 and 7, and returns an
equivalent day name as a string in the form "Sun", "Mon", "Tue",
and so forth.

Syntax:
D$ = DayName$(Day%)

Where:

Day% is an integer within the range of 1 and 7 inclusive, and D$
receives the equivalent day name in the form of a string.

Comments:

Because DayName has been designed as a function, it must be
declared before it may be used.

Because DayName is a function it may be used directly in a PRINT
or assignment statement, or in combination with other BASIC or
QuickPak Professional functions:

PRINT "Today is " DayName$(Day%)

or

Today$= DayName$(WeekDay%(DATE$)}

Also see the related function MonthName.

Crescent Software, Inc. 7-21

I

I

Chapter 7 QuickPak Professional

Demo123
Lotus 123 example program contained in DEM0123.BAS

Purpose:

Demo123 is an example program that shows how to read and write
files that can be processed by Lotus 123. This program is derived
from an article we wrote that appeared in the December 13, 1988
issue of PC Magazine. Along with the sample routines for accessing
Lotus 123 files, a brief discussion of the Lotus file format is given
in comments in the DEM0123.BAS program.

7-22 Crescent Software, Inc.

QuickPak Professional Chapter 7

DirTree
BASIC subprogram and example contained in

DIRTREE.BAS

Purpose:

DirTree reads a disk's entire directory structure, and returns it in
two string arrays suitable for displaying.

Syntax:

CALL DirTree(Tree$(), Ful1Path$(), Levels%)

Where:

Tree$(1) is initially assigned to the root directory of a drive, and the
rest of the array receives the formatted directory structure.
FullPath$0 is returned holding the actual directory names, and
Levels indicates the total number of directory levels that were
encountered.

Comments:

The DirTree subprogram is combined with a demonstration program
in a single file, so you must copy it to your own program.

It is essential that you seed the first element in Tree$0 with the root
directory of a drive:

Tree$(!)= "C:\"

The proper setup and use of DirTree is shown in the
DIRTREE.BAS demonstration program.

Crescent Software, Inc. 7-23

I

I

Chapter 7 QuickPak Professional

EDate2Num
assembler function contained in PRO.LIB

Purpose:

EDate2Num accepts a date in the European "DDMMYY" format,
and returns a corresponding integer value.

Syntax:
Days= EDate2Num%(Dat$)

Where:

Dat$ is a date in the form of "DDMMYY" or "DD-MM-YYYY"
or "DD.MM.YYYY" or any such combination, and Days receives
the number of days before or after 31-Dec-1979 (12-31-1979).

Comments:

Because EDate2Num has been designed as a function, it must be
declared before it may be used.

EDate2Num is nearly identical to the Date2Num routine meant for
use with American dates, but instead accepts dates in the European
format.

See the description for Date2Num for more information about
storing dates as integers.

Also see the related routine ENum2Date.

7-24 Crescent Software, Inc.

QuickPak Professional Chapter 7

EMS Manager
assembler subroutines contained in PRO.LIB

The QuickPak Professional EMS Memory Manager is a complete
set of subroutines that allow you to store and retrieve any type of
data using expanded memory. Because memory is allocated in 16K
blocks, EMS is very useful for storing arrays, text and graphic
screens, and very long strings. It is not appropriate for storing
individual variables or short strings.

Each of the EMS routines is explained in detail on the pages that
follow, along with a brief example showing the correct usage. All
of these routines are written in assembly language, and are
contained in PRO.LIB.

Before any EMS routines may be used in a program, the
EmsLoaded function must be invoked to determine if EMS memory
is installed, and if the appropriate driver software is loaded. This is
not a requirement of the EMS hardware, however EmsLoaded
performs some initialization that allows the other routines to operate
more quickly.

To be compatible with as many PC systems as possible, none of
these routines require version 4 or later of the EMS software. The
EmsVersion function is provided solely in the interest of
completeness. However, future versions of QuickPak Professional
may include routines that take advantage of features available only
in version 4.

For most applications you will use four of these routines as follows.
The EmsLoaded function will first be used to see if EMS memory is
installed and available. The Array2Ems and Ems2Array routines
may then be used to copy data to and from EMS memory.
EmsRelMem will be used to release the EMS memory when it is no
longer needed. It is very important that you release the memory that
was allocated before your program ends, so it may be used by other
programs. Although the discussion that follows describes storing
and retrieving arrays, Array2Ems and Ems2Array may in fact be
used with any contiguous block of memory.

Crescent Software, Inc. 7-25

Chapter 7 QuickPak Professional

When Array2Ems is called, the correct amount of memory will be
allocated for you automatically, based on the number of elements
you are storing and the size of each element. Besides allocating
memory, Array2Ems also returns a "handle" number that will be
used to retrieve the array later. This handle remains active until the
EmsRelMem routine is called to "close" the handle and release the
memory.

Each time Array2Ems is called, a new handle is obtained. Thus, if
you intend to save the same array more than once in EMS memory
you should call EmsRelMem before each subsequent save.
However, when Ems2Array is used to retrieve an array, the
memory is not automatically released. Therefore, you may retrieve
the array as many times as you'd like, and call EmsRelMem only
once when the memory is no longer needed.

A list of the EMS error codes is shown in the table on the following
page. Similar to the way errors are reported for the various
QuickPak Professional DOS routines, EMS errors are detected by
querying the EmsError function. This function returns the status of
the most recent EMS service, and is either zero meaning no error
occurred, or it contains an error code. The "official" EMS errors
have values of 128 or higher, and we have added a few of our own
starting at 1.

7-26 Crescent Software, Inc.

QuickPak Professional Chapter 7

EMS ERROR CODES

Hex Dec Meaning
OOH 0 No error
01H 1 EmsLoaded hasn't been used yet to initialize

these routines
02H 2 The element length was given as zero
03H 3 The number of elements was given as zero
80H 128 Internal error in EMS device driver
81H 129 Hardware malfunction
83H 131 Invalid EMS handle
84H 132 Function requested is undefined
85H 133 No more handles are available
86H 134 Memory deallocation error
87H 135 More pages were requested than exist in the

system
88H 136 More pages were requested than are currently

available
89H 137 Zero logical pages requested
8AH 138 Logical page number requested is out-of-range

for handle
8BH 139 Physical page number requested is out-of-range

Many of these routines have been designed as functions, and
therefore must be declared before they may be used in a program.
A complete demonstration is given in the DEMOEMS.BAS example
program.

Also see DEMOEMS2.BAS which shows how to manipulate
two-dimensional numeric arrays in EMS memory.

Crescent Software, Inc. 7-27

I

I

Chapter 7 QuickPak Professional

EMS FUNCTIONS

EmsError - function

Reports the status of the most recent EMS operation.

IF EmsError% THEN PRINT "Error number"; EmsError%; "occurred."

EmsGetPFSeg - function

Returns the physical page frame segment that EMS is using in DOS
memory.

PRINT "The physical page frame segment is"; EmsGetPFSeg%

This function is needed only if you intend to access EMS memory
pages directly. The EMS driver software makes a page of expanded
memory available to an application by mapping it onto a segment in
normal DOS memory. This function reports which segment that is.

EmsLoaded - function

Returns -1 if the EMS driver software is loaded, or O if it is not.

IF Emsloaded% THEN
PRINT "EMS memory is loaded on this PC."

ELSE
PRINT "Sorry, this PC does not have EMS."

END IF

EmsNumPages - function

Returns the number of 16K pages currently assigned to the specified
handle.

7-28

PRINT Handle%; "is currently using"; EmsNumPages%(Handle%}; _
"pages."

Crescent Software, Inc.

QuickPak Professional Chapter 7

EmsPageCount - function

Returns the total number of 16K EMS memory pages present in a
system.

PRINT "This PC has a total of"; EmsPageCount%; "16K pages."

EmsPagesFree - function

Returns the number of currently available 16K EMS memory pages.

PRINT "This PC has"; EmsPagesFree%; "16K pages available."

Ems Version - function

Returns the version number for the EMS driver software times 100.
For example, EMS driver version 3.40 will be reported as the value
340.

PRINT "This PC is using EMS version"; EmsVersion% / 100

The major and minor portions of the version may be easily isolated
as shown below.

Major= EmsVersion% \ 100
Minor= EmsVersion% MOD 100

Crescent Software, Inc. 7-29

I

I

Chapter 7 QuickPak Professional

EMS SUBROUTINES

Array2Ems - subroutine

Copies all or part of an array or other block of memory into EMS
memory.

or

CALL Array2Ems(SEG Array(Start), E1Size%, NumEls%, Handle%)

CALL Array2Ems(BYVAL Segment%, BYVAL Address%, NumBytes%, 1, _
Handle%)

Where Array(Start) is any numeric or TYPE array, ElSize % is the
size of each element in bytes, NumEls% is the total number of
elements to copy into EMS memory, and Handle% is the handle
returned by Array2Ems. The second example shows how to store
any contiguous block of memory.

The E1Size% parameter would be 2 for an integer array, 4 for a
long integer or single precision array, and 8 for a double precision
array. Array2Ems also accepts the negative code values used by the
QuickPak Professional TYPE sort routines. To store fixed-length
string and TYPE arrays in expanded memory, El Size% will be the
length of each element. However, to store a fixed-length string
array you must first define it as a TYPE. This is described in the
section entitled "Calling with Segments".

To store a conventional (not fixed-length) string array in EMS
memory you must first store it in an integer array using the
QuickPak Professional StringSave routine. Then the integer array
may be copied into EMS memory. To retrieve the string array you
would use Ems2Array to copy it to an integer array, and then use
StringRest to place it back into the string array. StringSave and
StringRest are described in the section entitled "String Manager
Routines".

7-30 Crescent Software, Inc.

QuickPak Professional Chapter 7

Array2Ems may also be used to store a single item, or any
contiguous block of memory by specifying the number of bytes in
El Size%, and using 1 for NumEls % . The actual number of bytes
copied into expanded memory is calculated within Array2Ems by
multiplying El Size% times NumEls % . If the number of bytes is
16K (16384) bytes or less, simply set E1Size% to the number of
bytes, and use 1 for NumEls%. To store, say, 64K you would
specify E1Size% as 16384, and set NumEls% to 4. Any similar
combination will also work. The example below shows how to save
a single text screen from a color display.

CALL Array2Ems(BYVAL &HBB00, BYVAL 0, 4000, 1, Handle)

Then to display the screen again later you would use:

CALL Ems2Array(BYVAL &HBB00, BYVAL 0, 4000, 1, Handle)

If there is not enough EMS memory available when Array2Ems is
called, the EmsError function will be set to either 135 or 136.

Ems2Array - subroutine

Retrieves an array or other block of memory from EMS memory.

or

CALL Ems2Array(SEG Array(Start), E1Size%, NumEls%, Handle%)

CALL Ems2Array(BYVAL Segment%, BYVAL Address%, NumBytes%, 1, _
Handle%)

Where Array(Start) is any type of numeric or TYPE array, E1Size%
is the size of each element in bytes, NumEls % is the total number
of elements to copy from EMS memory, and Handle% is the handle
that was assigned by Array2Ems when the array was stored. It is
essential that the array being restored has been sufficiently
dimensioned to hold the information being copied to it.

This is the exact opposite of Array2Ems, and the parameters have
the same meaning as in that routine.

EmsAllocMem - subroutine

Allocates a specified number of 16K pages.

Crescent Software, Inc. 7-31

I

I

Chapter 7 QuickPak Prqfessional

CALL EmsAllocMem(NumPages%, Handle%)

Where NumPages% is the number of 16K blocks of memory being
requested, and Handle% is returned to identify the memory for later
use. Because Array2Ems allocates the correct amount of memory
automatically, this routine is needed only when using the
EmsSetPage service to manipulate EMS memory manually.

EmsGetlEI - subroutine

EmsGetlEl allows retrieving a single element from expanded
memory.

CALL EmsGetlEl(SEG Value, E1Size%, E1Num%, Handle%)

Where Value is any variable, and E1Size% is either its length in
bytes, or a special code that indicates the length (see below).
ElNum % is the element number (based at one, not zero), and
Handle% is the EMS handle that was assigned when the array was
first saved.

EmsGetlEl allows you to retrieve a single element from an array
that has been saved in expanded memory, when you don't want to
have to retrieve the entire array. Another important use would be to
access a single screen from among several that are being stored in
EMS memory. Because the same routine may be used in a program
to process different types of variables, you should declare it using
the "AS ANY" option:

DECLARE SUB EmsGetlEl(SEG Value AS ANY, E1Size%, E1Num%, Handle%)

The E1Size% variable may optionally be the special size code that is
used by the various TYPE array sorts.

Also see the companion routine EmsSetlEl which allows you to
assign a single element.

7-32 Crescent Software, Inc.

QuickPak Professional Chapter 7

EmsRelMem - subroutine

Release all memory associated with a specified handle.

CALL EmsRelMem(Handle%)

EmsSetError - subroutine

Allows a BASIC program to set or clear the EmsError value.

CALL EmsSetError(Value%)

EmsSetPage - subroutine

Allows access to individual pages in EMS memory.

CALL EmsSetPage(Page%, Handle%)

Where Page% is the desired page number, and Handle% is the
handle that was assigned when EmsAllocMem or Array2Ems was
first called.

Although the EMS driver software uses zero to indicate the first
page, this routine accepts page numbers starting at one. Therefore,
if you EmsAllocMem was used to request, say, four pages, then
pages one through four will be valid. You may also use EmsSetPage
to get at memory that was allocated with Array2Ems, however it
will be up to you to determine in which page a given array element
is stored.

Crescent Software, Inc. 7-33

Chapter 7 QuickPak Professional

EmsSetlEI - subroutine

EmsSetlEl allows assigning a single element in an array that is
stored in expanded memory.

CALL EmsSetlEl(SEG Value, E1Size%, E1Num%, Handle%)

Where Value is any variable or constant, and E1Size% is either its
length in bytes, or a special code that indicates the length (see
below). E1Num% is the element number (based at one, not zero),
and Handle% is the EMS handle that was assigned when the array
was first saved.

EmsSetlEl allows you to assign a single element into an array that
has been saved in expanded memory, when you don't want to have
to retrieve the entire array, make the assignment, and then save it
back again. Another important use would be to store multiple screen
images in EMS memory.

Because the same routine may be used in a program to process
different types of variables, you should declare it using the "AS
ANY" option:

DECLARE SUB EmsSetlEl(SEG Value AS ANY, E1Size%, E1Num%, Handle%}

The ElSize % variable may optionally be the special size code that is
used by the various TYPE array sorts.

Also see the companion routine EmsGetlEI which allows you to
retrieve a single element.

7-34 Crescent Software, Inc.

QuickPak Professional Chapter 7

Empty
assembler subroutine contained in PRO.LIB

Purpose:

As its name implies, Empty is an empty procedure that does
absolutely nothing. However, Empty is invaluable when timing
BASIC functions, precisely because it takes such little time to
execute.

Syntax:

CALL Empty(AnyVariable)

Where:

AnyVariable is any type of variable or BASIC function.

Comments:

We discovered the need for Empty while comparing BASIC
functions, to see which was the fastest. One common method for
benchmarking a block of code is to use BASIC's TIMER, and then
executing the code in a FOR NEXT loop many times. Then to
determine how long it took, simply divide the total time by the
number of iterations. When testing a BASIC subprogram this is
fairly easy to do, as shown below:

Start! = TIMER
FOR X = 1 TO 1000

CALL SubProgram(...)
NEXT
Elapsed! = TIMER - Start!
PRINT USING "Each iteration took#.###### seconds."; Elapsed! / 1000

But when a function is being tested, you can't just use CALL to
invoke it. Rather, you must assign its output which takes time
(especially for string functions), or print it, which takes even more
time. Empty gives you a way to do something with the output of a
function, in as little time as possible:

CALL Empty(SomeFunction(..))

Crescent Software, Inc. 7-35

I

Chapter 7 QuickPak Professional

ENum2Date
assembler function contained in PRO.LIB

Purpose:

ENum2Date converts a previously encoded integer date to an
equivalent string in the European format.

Syntax:

Oat$= ENum2Date$(Days%)

Where:

Days% is an integer variable or value within the range -29219 to
31368, and Dat$ receives the date in the form of
"DD-MM-YYYY".

Comments:

Because ENum2Date has been designed as a function, it must be
declared before it may be used.

ENum2Date is nearly identical to the Num2Date routine meant for
use with American dates, but instead returns dates in the European
format. See the description for Date2Num for more information
about storing dates as integers.

Also see the related routine EDate2Num.

7-36 Crescent Software, Inc.

QuickPak Professional Chapter 7

Evaluate
BASIC function contained in EVALUATE.BAS

Purpose:

Evaluate is a full-featured expression evaluator. It accepts a formula
in an incoming string, and returns a double precision result.
Capitalization is ignored (in keywords such as LOG and SIN),
except for the "E" used for scientific notation. To Evaluate, a lower
case "e" represents the constant, and an upper case "E" is for the
exponent.

Syntax:

Answer= Evaluate#(Expression$)

Where:

Expression$ is of the form

10 * (12. 3 + (4E-13)) / LOG(8)

and Answer receives the computed answer. If the incoming string is
invalid (for example a mismatched number of parentheses), the
incoming string will be returned with a leading percent sign (%)
appended to it.

Comments:

Evaluate is set up as a function, with a demonstration contained in
the same file. The demo is set up to display a variety of sample
formulas, from which you may select one to try out. As with the
other QuickPak Professional BASIC functions, you must copy the
function source code into your own programs.

Scientific notation is also supported using "E" (but not "D" or "e").

For example: 10E+3 or SE-19

Evaluate recognizes two constants, "PI" and "e".

Crescent Software, Inc. 7-37

I

Chapter 7 QuickPak Professional

The table below illustrates the operations supported by Evaluate:

Table 7-1
ABS Absolute Value
AND Logical AND
ARCCOS Arc Cosine
ARCCOSH Arc Hyperbolic Cosine
ARCCOT Arc Cotangent
ARCCOTH Arc Hyperbolic Cotangent
ARCCSC Arc Cosecant
ARCCSCH Arc Hyperbolic Cosecant
ARCTANH Arc Hyperbolic Tangent
ARCSEC Arc Secant
ARCSECH Arc Hyperbolic Secant
ARCSIN Arc Sine
ARCSINH Arc Hyperbolic Sine
ATN Arc Tangent
CLG Common Log (base 10, what LOG really is)
cos Cosine
COT Cotangent

I
COTH Hyperbolic Cotangent
csc Cosecant
CSCH Hyperbolic Cosecant
EXP Exp
LOG Natural Log (base e, what BASIC calls LOG)
NOT Logical NOT
OR Logical OR
SINH Hyperbolic Sine
SECH Hyperbolic Secant
SEC Secant
SIN Sine
SQR Square Root
TAN Tangent
TANH Hyperbolic Tangent

7-38 Crescent Software, Inc.

QuickPak Professional

The following table shows the math operators supported by
Evaluate.

A

*
I
\

+

<
=
>

Table 7-2
Factorial
Exponentiation
Multiplication
Division
Integer Division
Addition
Subtraction (or unary minus such as -15)
Less than
Equal to
Greater than

Crescent Software, Inc.

Chapter 7

I

7-39

I

Chapter 7 QuickPak Professional

Extended
assembler subroutine contained in PRO.LIB

Purpose:

Extended will download a replacement font file to an Epson printer,
enabling it to print the entire IBM extended character set.

Syntax:
CALL Extended

Comments:

Extended always sends its output to the printer connected to LPTl:
To send the codes to LPT2: you should run the PSwap program
described elsewhere in this manual.

7-40 Crescent Software, Inc.

QuickPak Professional Chapter 7

Factorial
assembler function contained in PRO.LIB

Purpose:

Factorial provides an extremely fast way to obtain a factorial value.

Syntax:

Answer= Factorial#(Number%)

Where:

Number% is a number between O and 170, and Answer receives its
factorial. If number% is negative or greater than 170, Answer
instead receives -1.

Comments:

Because Factorial has been designed as a function, it must be
declared before it may be used.

Computing factorials takes an enormous amount of time because so
many double precision numbers must be multiplied. The approach
we have taken here is to instead calculate all of the answers ahead
of time, and place them into a table. This way, Factorial can look
up the correct answer very quickly.

This table is stored in the function's code segment, to avoid stealing
string space from BASIC. You may edit the table to shorten it if
you don't need the full range of factorials this program can
accommodate. We recommend that you remark out the table entries
rather than remove them permanently. If you do shorten the table,
be sure to also change the test that compares the incoming value to
170. Of course, you will have to reassemble the FACT.ASM source
file.

Crescent Software, Inc. 7-41

I

Chapter 7 QuickPak Professional

FileView
assembler subroutine contained in PRO.LIB

Purpose:

File View is an assembly language version of the View File file
browsing subprogram. File View supports pollable operation, and
also lets you browse multiple files simultaneously.

Syntax:

REDIM Buffer%(1 TO 16384)
CALL FileView(FileName$, Ky%, Action%, FVlnfo, SEG Buffer%(1))

Where:

FileName$ is the file to browse.

Ky% is the last key pressed or a negative version of the key's
extended code.

Action% determines the behavior of the routine as follows:

0 = FileView assumes full control and returns on Escape
1 = Initializes the re-entrant mode, sets Action = 3
2 = Updates the screen, then sets Action to 3
3 = Re-enters and processes any keys pending
4 = Sets Action = 3 and exits
s = Terminates and closes the file

FVInfo is the TYPE variable containing window information and
the current operating parameters.

Buffer%() is 32K buffer that View File needs to hold the file
contents.

7-42 Crescent Software, Inc.

QuickPak Professional Chapter 7

Comments:

Although the View File subprogram has been a part of QuickPak
Professional for a long time, it is written in BASIC and is thus
much larger than this assembly language version. However, we
will continue to include ViewFile because it displays scroll bars,
and saves and restores the underlying screen which File View
doesn't. Also because ViewFile is written in BASIC, most
programmers can see more clearly how such a routine is written.

FileView is designed to be reentrant, using the same action methods
and parameters as PullDown and VertMenu. See the section
entitled "Multitasking menus" elsewhere in this manual for a
description of the Action parameter and polling techniques in
general.

Before calling FileView the calling program must create an integer
array of 32K (16384 elements) to serve as a file buffer, and pass
that array to File View.

Note that File View does not furnish a menu bar. If one is desired,
simply clear the screen before calling File View, print the desired
menu bar on line 24 or 25, set FVInfo.Rows to 23 or 24
(respectively), and then call File View.

FileView recognizes the four cursor keys, PgUp, PgDn, Home,
End, and Escape. Pressing Escape returns control to the calling
program. Note that FileView does not save and restore the
underlying screen that was displayed at the time of the call. If this
is needed, it must be done from the calling program.

FileView also lets the calling program specify where in the file to
begin displaying (but only when using the polled mode, and only
after calling it once to start at the beginning of the file). See
FILEVIEW .BAS for an example of implementing this feature.

A TYPE variable called FVInfo is used to pass a number of
arguments at one time. FVInfo is constructed as follows:

Crescent Software, Inc. 7-43

I

I

Chapter 7

TYPE FVInfo
Colr
ULRow
ULCol
LRRow
LRCol
HorizOffset
LoPtr
Fi leHandle
EndOfFi le
LineNumber
TabStop
Fi leSeek
FileOffset

END TYPE

AS INTEGER
AS INTEGER
AS INTEGER
AS INTEGER
AS INTEGER
AS INTEGER
AS INTEGER
AS INTEGER
AS INTEGER
AS LONG
AS INTEGER
AS LONG
AS LONG

QuickPak Professional

'text color, defaults to white on black
'these describe the window's corners
'(usually 1, 1, 25, BO)

'see below
'used internally, do not change!
'the DOS file handle, do not change!
'used internally, do not change!
'top line displayed, do not change!
'spaces per Tab stop
'see below
'used internally, do not change!

The Colr portion of the TYPE specifies the combined
foreground/background color using the same coding method as the
QuickPak Professional video routines. See the discussion that
accompanies the COLORS.BAS program for more information.

The HorizOffset parameter specifies the left margin within the
window (in columns). It is used internally by FileView, but you
may also assign it to force the screen to be shifted right by
specifying a positive number.

TabStop sets the width (number of columns) when expanding Tab
characters. The normal value is 8, and you can also use a value of
zero to disable Tab expansion and display the CHR$(8) symbol
instead.

FileSeek may be used to begin displaying at any arbitrary location
in the file. For example, if you were to add a search capability that
examined the file for a string, you would need to tell FileView the
offset in the file where that string was found. You may modify
FileSeek only if File View is operating in a polled mode, and only
after it has been called once to start at the beginning of the file.
Note that you do not have to provide the exact offset in the file
where the line begins. If the offset is, say, fifteen characters into
the line, File View will still display the entire line.

7-44 Crescent Software, Inc.

QuickPak Professional Chapter 7

FudgeFactor
assembler function contained in PRO.LIB

Purpose:

FudgeFactor returns a long integer value that directly corresponds
to the processing speed of a PC.

Syntax:

Fudge= FudgeFactor&

Where:

Fudge receives a value that indicates the relative speed of a PC.

Comments:

Because FudgeFactor is designed as a function, it must be declared
before it may be used.

FudgeFactor is intended to be used with the Pause3 routine.
However, it does provide a direct way to estimate the overall speed
of the host PC it is running on. The table below shows the results
we obtained using FudgeFactor on a variety of popular personal
computers.

Brand/Model Speed CPU Result

Epson Equity 4.77 MHz. 8088 2003
Epson Equity 10 MHz. 8088 4228
NEC PowerMate 8 MHz. 80286 7346
Hyundai AT clone 10 MHz. 80286 9345
IBM Model 80 PS/21.6 MHz. 80386 19135
DELL System 310 20 MHz. 80386 33814

FudgeFactor is demonstrated in the PAUSE3.BAS example
program.

Crescent Software, Inc. 7-45

I

I

Chapter 7 QuickPak Professional

GetCMOS
BASIC example program contained in GETCMOS.BAS

GETCMOS .BAS is a demonstration program that shows how to
access the data in the CMOS RAM of an AT or compatible
computer. Several useful pieces of information are in there,
including the floppy drive types and total system memory (including
extended).

7-46 Crescent Software, Inc.

QuickPak Professional Chapter 7

GetCPU
assembler function contained in PRO.LIB

Purpose:

GetCPU returns an integer value that indicates the type of CPU
installed in the host PC.

Syntax:

CPU= GetCPU%

Where:

CPU receives either 86, 286, 386 or 486 to indicate the presence of
an 8086/88 (or NEC V20/30), 80286, 80386, or 80486 CPU.

Comments:

Because GetCPU has been designed as a function, it must be
declared before it may be used.

GetCPU can be used to determine whether or not certain CPU
specific instructions can be executed on the host system such as our
XMS memory management routines.

See GETEQUIP .BAS for an example of using GetCPU.

Crescent Software, Inc. 7-47

I

I

Chapter 7 QuickPak Professional

GetDS
assembler function contained in PRO.LIB

Purpose:

GetDS returns BASIC's current internal data segment.

Syntax:

Segment= GetDS%

Where:

Segment receives the default value of the DS register in a BASIC
program.

Comments:

Because GetDS has been designed as a function, it must be declared
before it may be used.

Even though DEF SEG will establish BASIC's data segment as the
current one for subsequent BSAVES, PEEKS, and so forth, there is
no direct way to know what that segment is.

Under QuickBASIC 4 you could ask for the VARSEG of any
normal (non-array) variable, and get the same result. But the other
Microsoft compilers do not offer that feature.

GetDS is used in the DATA.BAS example program to load data that
has been stored in the code segment into a string. It would also be
useful with the QuickPak Professional QBLoad and QBSave
routines when loading or saving data in BASIC's default segment.

7-48 Crescent Software, Inc.

QuickPak Professional Chapter 7

GetEquip
assembler subroutine contained in PRO.LIB

Purpose:

GetEquip returns several items from the equipment list kept in the
low-memory area of a PC.

Syntax:

CALL GetEquip(Floppies%, Parallels%, Serials%)

Where:

Floppies% returns holding the number of floppy disks, Parallels%
holds the number of parallel printer adapters, and Serials% tells
how many serial ports are installed.

Comments:

GetEquip is useful in a variety of situations. It is particularly handy
when used in conjunction with an automatic installation program for
applications you create. For example, knowing that a PC has only
one floppy disk drive helps you avoid the "Insert disk for drive B"
nuisance message that DOS displays. Likewise, if a given PC has
only one parallel or serial port, then you could avoid a potential
lockup caused by trying to access a device that isn't there.

Crescent Software, Inc. 7-49

I

I

Chapter 7 QuickPak Professional

LockUp
assembler subroutine contained in PRO.LIB

Purpose:

LockUp causes an immediate system freeze that can only be cleared
by turning off the PC's power switch.

Syntax:

CALL LockUp:

Comments:

Whenever a DOS program is exited, any data that had been in the
computer's memory is still present. Anyone familiar with DEBUG
could then come along and easily browse through that data. Even
using Ctrl-Alt-Del will not necessarily clear out the contents of
memory.

Because LockUp requires the PC's power to be turned off before it
can be used again, you are assured that any abandoned data will not
be viewed.

Also see the related routine ReBoot.

7-50 Crescent Software, Inc.

QuickPak Professional Chapter 7

MakeQLB
BASIC utility program contained in MAKEQLB.BAS

Unlike most of the QuickPak Professional routines that are added to
your own programs, MakeQLB is intended to serve as a stand-alone
utility.

MakeQLB will examine a program and all of its dependent
modules, and create a new Quick Library containing only those
routines that are necessary. This is important when the programs
you develop are very large, because it eliminates the wasted
memory taken by routines that are not used. MakeQLB also allows
you to easily combine routines from multiple library files, without
having to extract each individual object module.

MakeQLB knows which routines are to be included by examining
your main program for CALL statements, and by searching for
DECLARE statements when the CALL keyword is not used.
MakeQLB also searches include files to any level and the .MAK file
if one is present, to account for all of the modules in a complete
program.

MakeQLB will automatically report any subprograms or functions
that have been declared but are not being used. Of course, those
routines will not be added to the resultant Quick Library. It will
also report any subprograms and functions that are present but
never called. As an option, you may specify a file that contains a
list of all the routines that are to be included in the library, rather
than having MakeQLB examine your source files.

MakeQLB uses an interface similar to the LINK and LIB programs,
and you may either enter the parameters on a single line, or wait for
MakeQLB to prompt you for them. The command line syntax is as
follows:

MAKEQLB mainproglroutines. 1st, qlbname, listfile, libl _
lib2, bqlbname

You may also specify more than one file name to be examined, by
separating each with a blank space.

We have enhanced MAKEQLB in this version of QuickPak
Professional to allow the inclusion of explicit object files, as well as
automatically adding those contained in one or more .LIB libraries.

Crescent Software, Inc. 7-51

I

I

Chapter 7 QuickPak Professional

If you are running MakeQLB and supplying all of the parameters on
the command line, list the object file names intermixed with source
file names separated by a space. If you are letting MakeQLB
prompt you for the names, also enter one or more BASIC and
object files in answer to the source file prompt. Note that you must
include the . OBJ extension, so MakeQLB will know what you
mean. The complete syntax is as follows:

MAKEQLB basicprogram [basicprogram2] [object.obj), quicklib[.qlb],_
l istfi le[. 1st], library[. lib] [library2 [.lib], [bqlb##] [;]

This next example tells MakeQLB to examine the BASIC program
file MYPROG.BAS, and also explicitly include OBJECTl.OBJ and
OBJECT2. OBJ in the Quick Library.

makeqlb myprog objectl.obj object2.obj, , , pro, bqlb45

If you are using BASIC 7 .0 then the last parameter should be
QBXQLB.LIB.

Mainprog is the main BASIC program to examine, with a .BAS
extension assumed. If a file name with a .LST extension is given,
MakeQLB will instead use the procedure names contained in that
file when creating the Quick Library.

Qlbname is the name of the resultant Quick Library. If the name is
omitted, a library will be created with the same name as the main
program, but with a .QLB extension. However, you must add a
delimiting comma if the qlbname parameter is not used. If you
specify "NUL" for the .QLB name, MakeQLB will merely search
for unnecessary DECLARE statements and dead code, but without
creating a Quick Library.

The listfile that is created contains a list of all the routines that are
being added to the Quick Library. This file defaults to a .LST
extension, and is in the correct format that MakeQLB requires to
create a library from a list of procedure names. This way, if you
need to add a routine or two to the Quick Library later on, you can
simply edit the list file. Creating a Quick Library from a list file is
of course much faster than examining an entire BASIC program. If
the listfile parameter is omitted, the same name as the main
program will be used, but with a .LST extension. To tell MakeQLB
not to create a list file, use the reserved name NUL for that
parameter.

7-52 Crescent Software, Inc.

QuickPak Professional Chapter 7

The libl and lib2 parameters are library files (.LIB extension) that
contain the procedures being added to the Quick Library. One or
more library names may be specified, with a blank space used to
delimit each name. If no library name is given, the name PRO.LIB
is assumed.

The last parameter tells MakeQLB which "bqlb" support library is
to be specified when linking. The default name is BQLB45.LIB,
which is the library that comes with QuickBASIC version 4.5.

MakeQLB works by creating an object file that contains the list of
procedure names. By establishing these procedures as External,
they will be included in the Quick Library automatically when
MakeQLB invokes LINK. The dirty work of extracting each routine
from the various .LIB files is thus handled entirely by LINK.

Crescent Software, Inc. 7-53

I

I

Chapter 7 QuickPak Professional

Marquee
BASIC subprogram contained in MARQUEE.BAS

Purpose:

Marquee provides a cute way to display a scrolling message like a
movie marquee.

Syntax:

CALL Marquee(X$, Row%, Colr%)

Where:

X$ is the message to be displayed, Row% is the screen row to
display on, and Colr% is the color to use.

Comments:

Marquee is intended more as an example than a complete
subprogram. Therefore, if you want to add it to your own
programs, you should load MARQUEE.BAS as a module and copy
the subprogram. The technique for doing this is described in the
section on the QuickPak Professional BASIC functions.

Marquee assumes an 80 column screen when it calculates where to
center the message, though this is easy to modify if you are using
40 columns. Simply change the line

LOCATE 40 - L% \ 2

to

LOCATE 20 - L% \ 2

The color parameter must be coded in the format used by the
various video routines. See the discussion that accompanies
COLORS .BAS for information about combining foreground and
background colors into a single byte.

7-54 Crescent Software, Inc.

QuickPak Professional Chapter 7

MathChip
assembler function contained in PRO.UB

Purpose:

MathChip will report if an 80x87 math coprocessor chip is installed
in the host PC.

Syntax:

There= MathChip%

Where:

There receives either -1 if a coprocessor is installed, or O if one is
not.

Comments:

Because MathChip has been designed as a function, it must be
declared before it may be used.

MathChip is furnished as a companion to the GetCPU function, to
provide information about the host computer.

Crescent Software, Inc. 7-55

I

I

Chapter 7 QuickPak Professional

Maxlnt and MaxLong
assembler functions contained in PRO.LIB

Purpose:

Maxlnt compares two integer variables, and returns the value of the
higher one. MaxLong is similar, but is intended for use with long
integers.

Syntax:

Higher= Maxlnt%(Value1%, Value2%)

or

Higher= Maxlong&(Valuel&, Value2&)

Where:

Valuel and Value2 are the two values being considered, and Higher
receives the higher of the two values.

Comments:

Because Maxlnt and MaxLong have been designed as functions,
they must be declared before they may be used.

These routines provide a convenient way to avoid code such as:

IF X% > Y% THEN
A%= X%

ELSE
A%= Y%

END IF

A single assignment may be used instead:

A%= Maxlnt%(X%, Y%)

Maxlnt is used extensively in the QEdit text editor supplied with
QuickPak Professional to quickly determine the various boundaries
of borders and rows being displayed.

Also see the companion functions Minlnt and MinLong.

7-56 Crescent Software, Inc.

QuickPak Professional Chapter 7

Minlnt and MinLong
assembler functions contained in PRO.LIB

Purpose:

Minlnt compares two integer variables, and returns the value of the
smaller one. MinLong is similar, but is intended for use with long
integers.

Syntax:

Smaller= Minlnt%(Value1%, Value2%)

or

Smaller= Minlong&(Valuel&, Value2&)

Where:

Valuel and Value2 are the two values being considered, and
Smaller receives the lower of the two values.

Comments:

Because Minlnt and MinLong have been designed as functions, they
must be declared before they may be used.

These functions provide a convenient way to avoid code such as:

IF X% < Y% THEN
A%= X%

ELSE
A%= Y%

END IF

A single assignment may be used instead:

A%= Minlnt%(X%, Y%)

Minlnt is used extensively in the QEdit text editor supplied with
QuickPak Professional to quickly determine the various boundaries
of borders and rows being displayed.

Also see the companion functions Maxlnt and Max Long.

Crescent Software, Inc. 7-57

I

I

Chapter 7 QuickPak Professional

MonthNrune
assembler function contained in PRO.LIB

Purpose:

MonthName accepts an integer value between 1 and 12, and returns
an equivalent month name as a string in the form "Jan", "Feb",
"Mar", and so forth.

Syntax:

M$ = MonthName$(Month%)

Where:

Month% is an integer within the range of 1 and 12 inclusive, and
M$ receives the equivalent month name in the form of a string.

Comments:

Because MonthName has been designed as a function, it must be
declared before it may be used.

Because MonthName is a function it may be used directly in a
PRINT or assignment statement, or in combination with other
BASIC or QuickPak Professional functions:

PRINT "The current month is" MonthName$(Month%)

or

Month$= MonthName$(VAL(LEFT$(DATE$, 2)))

Also see the related function DayName.

7-58 Crescent Software, Inc.

QuickPak Professional Chapter 7

MsgBox
BASIC subroutine contained in MSGBOX.BAS

Purpose:

MsgBox provides a quick and attractive way to display a message
with word wrap, automatically centered on the screen. The
underlying screen is always saved, and it may be restored again
later.

Syntax:

CALL MsgBox(Message$, Wide%, Cnf)

Where:

Message$ is a single continuous string to be displayed, Wide% is
the desired width of the text (up to 74), and Cnf is a special TYPE
variable that must be defined. If Message$ is null, the most recently
displayed message is cleared, and the underlying screen restored.

Comments:

The top line of the MsgBox display is placed at the current cursor
line, so you should use LOCATE to set that before you call
MsgBox.

When MsgBox is called, the first thing it does is check the length of
the message string. If it is not null, it first saves the underlying
screen, and then displays the message. To clear the message and
restore the original screen, simply call MsgBox again with a null
string.

Be sure that you don't call MsgBox with a null string, unless it has
already been called at least once before. Also be aware that the
message should always be cleared before a new one is displayed.
Otherwise, there will be no way to restore the original screen.

The width is limited to 74 because MsgBox draws a border around
the text, and adds an extra blank space to make the text easier to
read. Two additional columns are needed to accommodate the
shadow.

Crescent Software, Inc. 7-59

I

I

Chapter 7 QuickPak Professional

The Cnf variable is described in the section entitled "DEFCNF and
SETCNF", but briefly, it contains a table of information about the
host PC. It is used by MsgBox to determine appropriate colors to
use, based on the type of monitor that is present.

Cnf is defined in the DEFCNF .BI Include file. The benefit of
isolating the color definitions to a single file is that you may
customize them to your own preferences, and they will then be
reflected in all of the programs that use DEFCNF.

MsgBox is shown in context in the DEMOPOP .BAS example
program.

7-60 Crescent Software, Inc.

QuickPak Professional Chapter 7

Num2Date
assembler function contained in PRO.LIB

Purpose:

Num2Date converts a previously encoded integer date to an
equivalent date string.

Syntax:

D$ = Num2Date$(Days%)

Where:

Days% is an integer variable or value within the range -29219 to
31368, and D$ receives the date in the form "MM-DD-YYYY".

Comments:

Because Num2Date has been designed as a function, it must be
declared before it may be used.

If Days% is out of range, D$ returns "% % % % % % % % % % ".

A complete discussion of the QuickPak Professional date conversion
method is given in the section that describes the Date2Num routine.

Crescent Software, Inc. 7-61

I

I

Chapter 7 QuickPak Professional

Num2Day
assembler function contained in PRO.LIB

Purpose:

Num2Day accepts an integer number that represents a date in the
QuickPak Professional format, and returns the appropriate day of
the week (1 - 7).

Syntax:

Day= Num2Day%(D%)

Where:

D % is a date that has already been converted to the equivalent
integer format, and Day receives a value corresponding to the day
of the week.

Comments:

Because Num2Day has been designed as a function, it must be
declared before it may be used.

Num2Day is useful in conjunction with the DayName$ function, as
shown in the DEMODATE.BAS example program.

Also see the related BASIC function Date2Day, that instead accepts
the date as a string.

7-62 Crescent Software, Inc.

QuickPak Professional Chapter 7

Num2Time
assembler function contained in PRO.LIB

Purpose:

Num2Time converts a long integer that represents the number of
seconds past midnight to an equivalent time in string form.

Syntax:
T$ = Num2Time$(Time&)

Where:

Time& is a long integer variable or value within the range O to
86400, and T$ receives the time in the form "HH:MM:SS".

Comments:

Because Num2Time has been designed as a function, it must be
declared before it may be used.

A complete discussion of the QuickPak Professional time
conversion method is given in the section that describes the
Time2Num routine.

Crescent Software, Inc. 7-63

I

I

Chapter 7 QuickPak Professional

Pause
assembler subroutine contained in PRO.LIB

Purpose:

Pause will pause a program's execution for a specified period of
time to a resolution as small as 1118th of a second.

Syntax:

CALL Pause(Ticks%)

Where:

Ticks% is the number of 1/ 18ths of a second to pause.

Comments:

Before Pause, the only reasonable way to add a short delay to a
program was with BASIC's TIMER function:

X! = TIMER
WHILE X! + .1 > TIMER
WEND

Pause minimizes both the amount of code you have to write, as well
as the amount that BASIC would generate to accomplish the same
function.

Pause works by examining the system clock data area in low
memory, and waits until the specified number of clock ticks have
occurred.

7-64 Crescent Software, Inc.

QuickPak Professional Chapter 7

Pause2
assembler subroutine contained in PRO.LIB

Purpose:

Pause2 will pause a program's execution for a specified number of
microseconds.

Syntax:
CALL Pause2(Microseconds%)

Where:

Microseconds% is the number of microseconds to pause.

Comments:

Pause2 is provided as a complement to Pause, to allow even greater
control over delay times. One important use of very small delays is
when communicating with external hardware devices. For example,
schemes that employ a hardware block to effect copy protection
often require this resolution when the protection device is being
polled.

Pause2 is limited to delays of 27500 microseconds or less (0.0275
seconds).

To implement very small delays, Pause2 must reprogram the PC's
timer chip. This in itself is not difficult to do, however the system
timer must also be adjusted.

Approximately 18 times per second, the system timer generates an
interrupt that updates the PC's internal clock. However, if this
interrupt were to come along just at the moment Pause2 began its
timing loop, several milliseconds would be lost while the timer
interrupt is being processed.

Pause2 takes this into account by synchronizing the system timer to
begin a new period at exactly the same time.

Crescent Software, Inc. 7-65

I

I

Chapter 7 QuickPak Professional

Pause3
assembler subroutine contained in PRO.LIB

Purpose:

Pause3 provides a simple method for obtaining delays with a
resolution of 1 millisecond, without having to reprogram the PC's
timer chips.

Syntax:

CALL Pause3(MilliSeconds%, Fudge&)

Where:

MilliSeconds % is the desired number of milliseconds to delay, and
Fudge& was previously obtained using the QuickPak Professional
FudgeFactor function.

Comments:

Even though QuickPak Professional provides the Pause2 routine for
creating microsecond delays, that routine must reprogram the PC's
timer chips as part of its operation. Unfortunately, this may cause
undesirable side effects if Pause2 is called many times in a
program. When such fine resolution is not required, Pause3 is
probably a better choice.

Pause3 expects two parameters - the number of milliseconds to
delay for, and a "fudge factor" that was determined earlier by the
QuickPak Professional FudgeFactor function. FudgeFactor reports
the relative speed of the host PC, which is then used by Pause3 to
know how many loop instructions to perform internally for a 1
millisecond delay.

Because FudgeFactor creates a delay of up to 1/10 second or so,
you should use it once at the beginning of your program, prior to
calling Pause3. This is shown in context in the PAUSE3.BAS
example program.

7-66 Crescent Software, Inc.

QuickPak Professional Chapter 7

PDQTimer
assembler function contained in PRO.LIB

Purpose:

PDQTimer is an integer-only TIMER replacement that avoids the
inclusion of BASIC's floating point code in your programs.

Syntax:

ThisTime = PDQTimer&

Where:

ThisTime receives the current timer count stored by the BIOS in
low memory.

Comments:

Because PDQTimer has been designed as a function, it must be
declared before it may be used.

PDQTimer returns a long integer value that corresponds to the
BIOS timer count stored in low memory. Because it peeks that
information directly, it does not add the enormous amount of
floating point code that QuickBASIC's TIMER does.

The declare syntax and a typical usage example is as follows:

DECLARE FUNCTION PDQTimer&()

Start&= PDQTimer&
FOR X& = 1 TO 100000
Z& = Z& + 1
NEXT
Done&= PDQTimer&

'start timing
'time this loop

'done timing

PRINT Done& - Start&; "18ths of a second have elapsed."

Crescent Software, Inc. 7-67

I

I

Chapter 7 QuickPak Professional

Peekl
assembler function contained in PRO.LIB

Purpose:

Peekl will read a byte at a specified segment and address, and
return its value.

Syntax:

Byte= Peek1%(Segment%, Address%)

Where:

Segment% and Address% indicate where the byte to be read is
located, and Byte receives its value.

Comments:

Because Peekl has been designed as a function, it must be declared
before it may be used.

One of the problems with the usual method of peeking memory is
that the segment to peek must be set with a DEF SEG statement.
While there's nothing inherently wrong with using DEF SEG, it
destroys any previous settings.

Of course, in most cases it really doesn't matter. However, when
you are creating reusable modules that will be called at different
times by different programs, using Peekl can avoid potential
problems.

7-68 Crescent Software, Inc.

QuickPak Professional Chapter 7

Peek2
assembler function contained in PRO.LIB

Purpose:

Peek2 will read a word (two bytes) at a specified segment and
address, and return its value.

Syntax:

Word= Peek2%(Segment%, Address%)

Where:

Segment% and Address% indicate where the word to be read is
located, and Word receives its value.

Comments:

Because Peek2 has been designed as a function, it must be declared
before it may be used.

One of the problems with the usual method of peeking memory is
that the segment to peek must be set with a DEF SEG statement.
While there's nothing inherently wrong with using DEF SEG, it
destroys any previous settings.

In most cases it really doesn't matter. But, if you are creating
reusable modules that will be called at different times by different
programs, using Peek2 can avoid potential problems.

Further, when two bytes must be obtained, Peek2 avoids the extra
calculations that would otherwise be needed. The first example
below uses the old method to look at the video buffer size in low
memory, to see how many bytes the current screen occupies.

DEF SEG = 0
X = PEEK(&H44C) + 256 * PEEK(&H44D)

Compare that with the Peek2 approach:

X = Peek2%(0, &H44C)

Crescent Software, Inc. 7-69

I

I

Chapter 7 QuickPak Professional

Pokel
assembler subroutine contained in PRO.LIB

Purpose:

Pokel will write a new byte to a specified segment and address.

Syntax:

CALL Pokel(Segment%, Address%, Byte%)

Where:

Segment% and Address% indicate where the byte to be written is
located, and the value held in Byte% is then stored in that location.

Comments:

One of the problems with the usual method of poking memory is
that the segment to write to must be set with a DEF SEG statement.
While there's nothing inherently wrong with using DEF SEG, it
destroys any previous settings.

Of course, in most cases it really doesn't matter. However, when
you are creating reusable modules that will be called at different
times by different programs, using Pokel can avoid potential
problems.

7-70 Crescent Software, Inc.

QuickPak Professional Chapter 7

Poke2
assembler subroutine contained in PRO.LIB

Purpose:

Poke2 will write a new word (two bytes) to a specified segment and
address.

Syntax:
CALL Poke2(Segment%, Address%, Word%)

Where:

Segment% and Address% indicate where the word to be written is
located, and the value held in Word% is then stored in that location.

Comments:

One of the problems with the usual method of poking memory is
that the segment to write to must be set with a DEF SEG statement.
While there's nothing inherently wrong with using DEF SEG, it
destroys any previous settings.

Of course, in most cases it really doesn't matter. However, when
you are creating reusable modules that will be called at different
times by different programs, using Poke2 can avoid potential
problems.

Further, when two bytes must be written, Poke2 avoids the extra
calculations that would otherwise be needed:

Value%= 12345
DEF SEG = Segment%
POKE Address%, Value% MOD 256
POKE Address%+ 1, Value%\ 256

Poke2 replaces the above mess with:

CALL Poke2(Segment%, Address%, 12345)

Crescent Software, Inc. 7-71

I

I

Chapter 7 QuickPak Professional

Power and Power2
assembler functions contained in PRO.LIB

Purpose:

Power and Power2 will raise any number to a power, or 2 to a
power respectively, simulating BASIC's x" n and 2" n.

Syntax:

X = Power(Y, N)
X = Power2(N)

Where:

'returns X = Y' N
'returns X = 2 • N

X is assigned either 2 A N power, or Y A N power, as shown above.

Comments:

Because Power and Power2 have been designed as functions, they
must be declared before they may be used.

When used with integer values these routines are much faster than
using BASIC's exponentiation operator which requires floating
point math.

These functions may be declared as either integer or long integer
functions, depending on the expected range of return values.

7-72 Crescent Software, Inc.

QuickPak Professional Chapter 7

PRNReady
assembler function contained in PRO.LIB

Purpose:

PRNReady will report whether a specified printer is available and
on-line.

Syntax:

Ready= PRNReady%(LPTNumber%}

Where:

LPTNumber% is either 1, 2, or 3 to indicate the parallel printer to
check, and Ready receives -1 if it is ready, or zero if it is not.

Comments:

Because PRNReady has been designed as a function, it must be
declared before it may be used.

PRNReady works by attempting to send two characters-a space
and a backspace- and reports if the printing was successful.
PRNReady begins by sending a CHR$(32) space to the specified
printer through the BIOS. If the BIOS returns an error, PRNReady
simply gives up and reports the error to the calling BASIC program.
If it successful, a backspace is then printed to "undo" the forward
space.

Comments in the assembler source code show how to modify
PRNReady to attempt two trial printings rather than only one. You
might want this because some printers are very slow when
performing a form-feed, and might appear to be not ready even
when they are. Most of the current PC's and PC clones use a BIOS
that tries for a long enough time. However, some computers do not
wait long enough for a slow printer to complete a form-feed before
reporting a time-out.

BLPRINT .BAS shows PRNReady in use, as well as how to reduce
the timeout delay when a printer is off-line.

Crescent Software, Inc. 7-73

I

I

Chapter 7 QuickPak Professional

PSwap
assembler subroutine contained in PRO.LIB

Purpose:

PSwap exchanges LPTl and LPT2 each time it is called.

Syntax:

CALL PSwap

Comments:

PSwap lets you quickly exchange the port addresses for the first two
parallel printers to allow LPrint statements to work with either one.

You should be aware that most software spoolers intercept the
printer port addresses when they are installed, so PSwap will not
work unless it is run before the spooler program is installed.

7-74 Crescent Software, Inc.

QuickPak Professional Chapter 7

QPCli and QPSti
assembler subroutines contained in PRO.LIB

Purpose:

QPCli and QPSti are a pair of routines that disable and enable
interrupts respectively.

Syntax:

CALL QPCl i
CALL QPSti

Comments:

'disable system interrupts
'reenable interrupts

There is usually little need for routines like these to be called from
BASIC. However, they were needed to properly access the CMOS
RAM in the GETCMOS.BAS example program. Because it is
possible for a system interrupt to come along and access the port at
the same time as the BASIC program, some way is needed to
prevent the conflict.

VERY IMPORTANT!

If you do not know how these routines are supposed to be used,
please do not experiment with them!

Crescent Software, Inc. 7-75

I

Chapter 7 QuickPak Professional

QPPlay
assembler subroutine contained in PRO.LIB

Purpose:

QPPlay is a replacement for BASIC's PLAY statement that greatly
reduces the amount of code needed to add music to your programs.

Syntax:

CALL QPPlay(Tune$)

Where:

Tune$ is a string that contains musical notes in the same format as
required by BASIC's PLAY statement.

Comments:

Unlike BASIC's PLAY statement which can increase your
program's size by as much as 14K, QPPlay adds only lK or so.

The only limitations compared to the BASIC version of PLAY is
that QPPlay will not operate in the background (MB and MF are
ignored), and a dot to extend a note's duration is not supported.
Since many programs do not need the ability to play music as a
background task, this routine can afford a substantial savings in
code size.

7-76 Crescent Software, Inc.

QuickPak Professional Chapter 7

QPSolver
BA SIC demonstration program contained in

QPSOL VER.BAS

QPSolver is a complete environment for entering and editing
variables and expressions to be evaluated using the QuickPak
Professional Evaluate function.

QPSolver is similar to a BASIC interpreter, in that you can enter
assignments as immediate commands, and then display the results
using PRINT statements. Variables may be assigned from numbers,
or from other variables. All of the functions that Evaluate supports
may be used; for example, you may enter an expression such as X
= ATN(Y).

Besides merely assigning and displaying variable values, you may
also set up Watch expressions in much the same way that
QuickBASIC allows. For example, the command WATCH X * (Y
ZJ sets that as a Watch expression, and the display will be updated
with each change to X, Y, or Z.

Finally, you can save and load sessions for later editing. The
command SAVE FILENAME will create a file named FILENAME,
and store the entire context of the current session. Likewise,
entering LOAD FILENAME will load that file and restore the
original variable values and Watch expressions.

Understand that QPSolver is not a true solver in the sense that
MathCad and TKSolver are. However, this is the core program for
a real solver we hope to eventually develop for inclusion in
QuickPak Scientific.

Crescent Software, Inc. 7-77

I

I

Chapter 7 QuickPak Professional

QPSound
assembler subroutine contained in PRO.LIB

Purpose:

QPSound is nearly identical to BASIC's SOUND statement, but
provides a considerable reduction in the amount of code added to a
program.

Syntax:

CALL QPSound(Frequency%, Duration%)

Where:

Frequency% is the desired frequency in Hz. (Hertz, or cycles per
second), and Duration% is the length of the sound in 1/18ths of a
second.

The frequency must be within the range 37 to 32767, and the
duration may range from 1 to 65535. We can't imagine why you'd
want a duration longer than, say, a few seconds, but if you do, a
long integer is needed to exceed 32767. Also, frequencies higher
than 18000 Hz. or so will be inaudible to most people.

Comments:

The SOUND statement is certainly a useful BASIC feature,
however using it adds considerably to size of a program. In a test
program compiled by QuickBASIC 4.5 using a single SOUND
statement increased the code size by l lK. QPSound is nearly
identical to BASIC's version, but adds less than fifty bytes to your
program.

The only real difference between QPSound and BASIC's SOUND is
that the sound is played in the "foreground" only. Where BASIC's
SOUND returns to your program immediately and continues to play
the tone in the background, QPSound waits until it has completed
before returning. QPSound is demonstrated in the QPSOUND.BAS
example program.

7-78 Crescent Software, Inc.

QuickPak Professional Chapter 7

QPSSeg and QPSegAdr
assembler functions contained in PRO.LIB

Purpose:

QPSSeg and QPSegAdr are replacements for the BASIC PDS SSEG
and SSEGADD functions, but they also work with regular
QuickBASIC.

Syntax:
Longlnt& = QPSegAdr&(Any$)
Segment%= QPSSeg%(Any$)

Where:

Longint& receives the segmented address of Any$, and Segment%
receives the segment that hold the data in Any$.

Comments:

Because QPSSeg and QPSegAdr have been designed as a function,
they must be declared before they may be used.

If you are like us and have to write code that will compile under
both QuickBASIC and BASIC 7 PDS, you will appreciate QPSSeg
and QPSegAdr. They return the same information as BASIC Ts
SSEGADD and SSEG. However, the same routines are provided in
both the QB and BC7 versions of the QuickPak Professional library.

Crescent Software, Inc. 7-79

I

I

Chapter 7 QuickPak Professional

QPUSI
assembler function contained in PRO.LIB

Purpose:

QPUSI (QuickPak Unsigned Integer) returns the low-word portion
of a long integer.

Syntax:
LowWord = QPUSI%(Longlnt&)

Where:

LowWord receives the two lowest bytes in Longlnt&.

Comments:

Because QPUSI has been designed as a function, it must be declared
before it may be used.

QPUSI is useful for those situations where you are using a long
integer to store integer information whose value may exceed 32767.
If you then need to pass that as a regular integer by value using
BYV AL, the only other way to obtain just the lower word is with
PEEK and POKE. QPUSI solves this problem by directly returning
just the low-word portion of the long integer.

7-80 Crescent Software, Inc.

QuickPak Professional Chapter 7

ReBoot
assembler subroutine contained in PRO.LIB

Purpose:

ReBoot causes the host PC to perform a "warm" boot, as if the
Ctrl-Alt-Del keys had been pressed.

Syntax:

CALL ReBoot

Comments:

For the most part, we prefer programs that are as friendly as
possible, and ReBoot is decidedly unfriendly. However, if you are
determined to lock out a user who, for example, doesn't know the
correct password, ReBoot will do it.

Also see the related routine LockUp.

Crescent Software, Inc. 7-81

I

I

Chapter 7 QuickPak Professional

ShiftIL and Shiftm
assembler subroutines contained in PRO.LIB

Purpose:

ShiftIL shifts the bits in an integer variable a specified number of
positions to the left, and ShiftIR shifts bits to the right.

Syntax:

CALL ShiftIL(IntVar%, NumBits%)

or

CALL ShiftIR(IntVar%, NumB1ts%)

Where:

IntVar% is the variable whose bits are to be shifted, and NumBits%
tells how many positions to shift them.

Comments:

Shifting bits in a variable is not something that most programmers
would need to do every day, but it does have a few uses. For
example, like the AddUSI function, shifting bits to the left can be
used to multiply a variable by 2, 4, 8, and so forth, without
generating an overflow error that might otherwise occur. Each time
the bits in an integer are shifted to the left one position, the variable
is multiplied by two. Likewise, shifting right divides by 2 for each
bit position shifted.

Another possible use is when creating a Line Style for use with the
graphics LINE command. LINE accepts an optional style argument
in an integer variable, to create a dotted line. The bits in the integer
are used to indicate which pixels are to be on or off in the line.
Thus, ShiftIL could be used to animate a line by redrawing it with a
new pattern.

Also see the related routines ShiftLL, and ShiftLR.

7-82 Crescent Software, Inc.

QuickPak Professional Chapter 7

ShiftLL and ShiftLR
assembler subroutines contained in PRO.LIB

Purpose:

ShiftLL shifts the bits in a long integer variable a specified number
of positions to the left, and ShiftLR shifts bits to the right.

Syntax:

CALL ShiftLL(Longlnt&, NumBits%)

or

CALL ShiftLR(Longlnt&, NumBits%)

Where:

Longlnt& is the variable whose bits are to be shifted, and
NumBits % tells how many positions to shift them.

Comments:

Shifting bits in a variable is not something that most programmers
would need to do every day, but it does have a few uses. See the
discussion of the ShiftIL and ShiftlR routines for some possible
applications.

Crescent Software, Inc. 7-83

I

I

Chapter 7 QuickPak Professional

Soundex
assembler function contained in PRO.LIB

Purpose:

Soundex returns a value that corresponds to the sound of a word.

Syntax:
Code$= Soundex$(Word$)

Where:

Word$ is any single word or proper name, and Code$ receives a
four-digit Soundex code such as "0122".

Comments:

Because Soundex has been designed as a function, it must be
declared before it may be used.

This routine employs the standard Soundex algorithm to return a
four-character string that loosely approximates how the string
sounds.

Soundex is often used for searching a database of names, when the
exact spelling is not known. To see if one string sounds like
another, you would simply compare the results that Soundex returns:

IF Soundex$(First$) = Soundex$(Second$) THEN
PRINT "They sound alike"

END IF

When a string is being converted to its equivalent Soundex code,
vowels are removed, and consonants that are similar are given the
same value. Note that when the same sound occurs twice or more
in succession, only one of them is counted. Also note that with
long strings the conversion ceases when all four digits are filled.
Likewise, short strings are padded with trailing "O" characters.

The conversion codes are shown in the table below.

7-84 Crescent Software, Inc.

QuickPak Professional

Letters
CodeNum

B F P V C G J K Q S X Z D T L M N R
1 1 1 1 2 2 2 2 2 2 2 2 3 3 4 5 5 6

Chapter 7

Thus, the string "QuickPak" would be coded as "2212" ("QCPK").
The first consonant, "Q", is translated to "2", and the vowels "ui"
are ignored. The "c" is then converted to "2", but the following
"k" is ignored because it has the same code as the "c". The "P" is
translated to "1 ", the vowel "a" is ignored, and the final "K" is
converted to "2".

It is important to understand that because of the many quirks in the
English language, Soundex is not always reliable.

Soundex is demonstrated in the SOUNDEX.BAS file.

Crescent Software, Inc. 7-85

I

I

Chapter 7 QuickPak Professional

String Manager

The Quick.Pak Professional String Manager is a comprehensive set
of routines that allow you to store entire string arrays in "far"
memory, and retrieve them again later. These routines are intended
to be used with conventional (not fixed-length) string arrays only,
which are copied into dynamic integer arrays. Once this is done the
string array may then be erased, or loaded with new information.
The original array contents may be retrieved at any time.

Because the dynamic arrays used for storage do not impinge on
BASIC's string space, you can maintain many separate string arrays
in a single program, and each may be as large as BASIC permits.
Another advantage to using dynamic arrays is that they can be
dimensioned and erased as needed. They may also be saved to
disk-or expanded memory if it is present-to accommodate even
larger amounts of string data. For more information about using
expanded memory, please see the description of the EMS Manager
elsewhere in this manual.

Each of the string manager routines is described in detail on the
pages that follow, along with a brief example showing the correct
usage. All but two of these routines are written in assembly
language. The assembler routines are contained in PRO.LIB, and
the BASIC routines are in the files GETlSTR.BAS and
STRREST.BAS. These two routines must be written in BASIC
because they assign strings, which cannot be done in assembly
language. All of the string manager services are demonstrated in the
DEMOSTR.BAS example program.

Unlike numeric, TYPE, and fixed-length arrays, string arrays are
not kept in contiguous memory locations. Rather, a table of
descriptors that hold the length and address of each string is
contiguous, and the strings themselves are scattered around in
"near" memory. Therefore, StringSave merely gathers up each
string element in succession, and copies it to an integer array.

The strings are stored in the integer arrays exactly as they would be
kept in a disk file. That is, a terminating carriage return and line
feed is placed after the end of each string element. This lets you
load and save an entire file very quickly by using the QuickPak
Professional FGetA and FPutA routines.

7-86 Crescent Software, Inc.

QuickPak Professional Chapter 7

FindLastSM - assembler function

FindLastSM (SM stands for String Manager) determines the actual
number of bytes occupied by strings in an integer storage array.

first see how many bytes are in the entire array
NumBytes = {UBOUND(Array%) - LBOUND(Array%) + 1) * 2

now see how many bytes are actually being used
NumBytes = FindlastSM&{SEG Array%(1), NumBytes)

Where Array%(1) is the first element in the integer array, and
NumBytes receives the number of active bytes in the array.
NumBytes may be either an integer or long integer variable.

Because FindLastSM has been designed as a function, it must be
declared before it may be used.

Not unlike the FindLast routine for string arrays, FindLastSM scans
the stated array backwards, looking for the last non-blank element.
FindLastSM is used internally by the GetlString and StringRestore
BASIC functions, and it is unlikely that you would need to use it
directly in your programs.

Crescent Software, Inc. 7-87

I

I

Chapter 7 QuickPak Professional

GetlStr - assembler subroutine

Copies a single string from an integer array. GetlStr is a low-level
routine that is used by the BASIC GetlString function. It is very
unlikely that you would need to call this routine directly, and it is
documented here solely in the interest of being complete.

CALL Get1Str(Work$, SEG Array%(1), StringNumber%)

Where Work$ has already been filled with the correct number of
spaces, Array%(1) is the first element in the storage array, and
StringNumber % is the element number of the string to retrieve. If
the array begins with element zero, you will of course use
Array%(0) instead of Array%(1).

7-88 Crescent Software, Inc.

QuickPak Professional Chapter 7

GetlString - BASIC function

Returns a single string from an integer array.

StringNumber% = 1
PRINT "String number one is: "; Get1String$(Array%(),

StringNumber%) -

Where Array%0 is the integer storage array, and StringNumber%
is the string to be retrieved.

GetNext - assembler function

Tells StringRestore the length of the next string to retrieve. GetN ext
is a low-level routine that scans ahead in the integer storage array
looking for the CHR$(13) that marks the end of the current string.
Once it is found, the length of the string is calculated and returned
to StringRestore. ThisAddress % is also modified to point to the next
string element in storage for the next time it is called. It is
extremely unlikely that you would need to call this routine directly.

Array$(X) = SPACE$(GetNext%(Segment%, ThisAddress%,
LastAddress%))

Where Segment% and ThisAddress% indicate where in
the integer array GetNext is to begin scanning, and LastAddress %
points to the last active byte in the integer array.

Crescent Software, Inc. 7-89

I

I

Chapter 7 QuickPak Professional

MidStrSave/MidStrRest - assembler subroutines

MidStrSave and MidStrRest are specialized versions of the string
manager routines StringSave and StringRest, which are designed to
save a MID$ portion of a string array.

To save:

DIM Storage%((NumE1s% * NumChars%) \ 2)
CALL MidStrSave(BYVAL VARPTR(Array$(First)), NumE1s%,

FirstChar%, NumChars%, SEG Storage%(0))

To restore:

Buffer$= SPACE$(NumChars%) 'LEN(Buffer$) indicates length
CALL MidStrRest(Buffer$, StrNumber%, SEG Storage%(0))
ERASE Storage% 'optionally free up the memory

Where Storage%() is an integer array used to store the portion of
the string array, and Array$() is the string array from which the text
is being captured.

NumEls % is the number of string elements to save, FirstChar%
indicates with which character to begin saving each element, and
NumChars % is the number of subsequent characters to save. If a
string contains too few characters when being saved, it is padded
with blank spaces in the storage array.

When restoring, strings are accessed one by one, and StrNumber %
tells which one to retrieve.

These routines were designed specifically for use with the QEdit
subprogram, to allow capturing and restoring text in columns. It is
unlikely that you would need these in your own programs, and they
are documented here solely for completeness.

Note that the string portions being saved and restored must be less
than 256 characters in length.

7-90 Crescent Software, Inc.

QuickPak Professional Chapter 7

NumStrings - assembler function

Returns the number of strings stored in an integer array.

DIM Array$(NumStrings%(SEG Array%(!}, NumBytes))

Once an array has been loaded from disk or copied from expanded
memory, you will need to know how many strings it contains. This
is what NumStrings % is for. If the array is going to be sent to
QEdit for editing, you will probably want to include additional
elements when dimensioning the string array.

Of course, you would use Array%(0) instead of Array%(!) if that is
the first element in the integer array. Also, the NumBytes parameter
indicates the total size of the storage array, and may be either an
integer or a long integer.

StringRest - assembler subroutine

Copies strings from an integer array into a string array. This is a
low-level routine used by the BASIC StringRestore subprogram,
and it is very unlikely that you would need to call it directly.

CALL StringRest(BYVAL VARPTR(Array$(1}), SEG Array%(!},
NumStrings%) -

Where Array$(!) is the first element in the string array, Array%(!)
is the first element in the integer array, and NumStrings % is the
number of string elements being restored. Of course, you would
specify element zero instead of element one for either array if that
is appropriate. StringRest requires that the correct number of
characters has already been set aside in each string element.

Crescent Software, Inc. 7-91

I

I

Chapter 7 QuickPak Professional

StringRestore - BASIC subprogram

Creates space in a string array and fills it with strings stored in an
integer array.

CALL StringRestore(Array$(), Array%())

Before calling StringRestore you must first dimension Array$0 to
the correct number of elements. However, if the number of strings
stored in the integer array is greater than Array$0 has been
dimensioned to, only UBOUND(Array$) elements will be restored.
Likewise, if the number of elements in Array$0 is greater than the
number of strings stored in Array%0, only the number of strings
actually present in Array%0 will be copied.

StringSave - assembler subroutine

Copies all or part of a string array to an integer array.

CALL StringSave(BYVAL VARPTR(Array$(1)), SEG Array%(1),
NumStrings%) -

Where Array$(1) is the first element in the string array, Array%(1)
is the first element in the integer array, and NumStrings % is the
number of string elements in Array$() to be saved. Of course, you
would specify element zero instead of element one for either array
if that is appropriate. It is essential that the integer array be
sufficiently dimensioned to hold the string data. See the description
for the StringSize function to see how to determine the number of
elements needed.

7-92 Crescent Software, Inc.

QuickPak Professional Chapter 7

StringSize - assembler function

Returns the number of bytes needed to store a string array in an
integer array.

NumBytes = StringSize&(BYVAL VARPTR(Array$(Start)),
NumStringE1s%) -

Where Array$(Start) is the first element to save in the string array,
and NumStringEls % is the number of elements in the string array to
include.

This function returns the number of bytes needed rather than the
number of elements, so you will know exactly how many bytes to
specify when saving the integer array to disk. To determine how
large to dimension the integer array to, simply divide the number of
bytes by two. If you intend to dimension the integer array starting at
element 1 (instead of 0), you should also add one extra element in
case the number of bytes is an odd number.

DIM Array%(Num8ytes \ 2)

or

DIM Array%(1 TO NumBytes \ 2 + 1)

StrLength - assembler function

Returns the length of a single string stored in an integer array.
StrLength is a low-level routine used by the BASIC GetlString
function. It is unlikely that you will need to access StrLength
directly.

Length= Strlength%(SEG Array%(1), NumBytes, StringNumber%)

Where Array%(1) is the first element in the integer storage array,
NumBytes is the total number of bytes in the array (as reported by
StringSize), and StringNumber% tells which string's length to
return. Notice that NumBytes may be either an integer or long
integer. A long integer is required if the array exceeds 32767 bytes
in size.

Crescent Software, Inc. 7-93

I

I

Chapter 7 QuickPak Professional

SublString - assembler subroutine

Sub !String will substitute a string contained in a "far" integer array
with a new one of the same or different length.

CALL Sub1String(New$, SEG Array%(1), NumBytes%, StrNumber%)

Where New$ is the new string to assign into the array, Array%(1)
is the first element in the integer storage array, NumBytes is the
number of active bytes (see below), and StrNumber% indicates
which string to replace. After SublString has performed the
substitution, NumBytes is modified to reflect the new number of
bytes taken. NumBytes may be either an integer or long integer.

Sub !String is meant to be used in conjunction with the string
manager routines, and it is demonstrated in the DEMONSTR.BAS
example program.

Because it is possible the new string may be longer than the original
string, we recommend that you include enough extra elements when
dimensioning the integer array. The demo program includes an
additional 100 elements (200 bytes), but you may need even more,
based on the number of substitutions you may make, and the added
length of the new strings.

7-94 Crescent Software, Inc.

QuickPak Professional Chapter 7

SysTime
assembler subroutine contained in PRO.LIB

Purpose:

Sys Time obtains the current system time through DOS, and returns
it in a string formatted to the hundredth of a second.

Syntax:

T$ = SPACE$ (11)
CALL SysTime(T$)

Where:

T$ must first be assigned to a length of at least eleven characters,
and SysTime then fills it with the system time in the form
"HH:MM:SS:HH".

Comments:

Even though DOS (and SysTime) report the system time to a
resolution of 11100th second, it is really only accurate to about
1118th second or so. The PC's hardware updates the current time
only that often, so the last digit has little meaning.

SysTime could be used to advantage if you want to simulate the
type of display used in televised sporting events, or to create extra
tension in an action game. The program fragment below shows how
to do this:

PRINT "Press a key to stop"
T$ = SPACE$(11)
LOCATE 1, 1
DO UNTIL LEN(INKEY$)

CALL SysTime(T$)
CALL QPrint(T$, -1, -1)

LOOP

Crescent Software, Inc. 7-95

I

Chapter 7 QuickPak Professional

Time2Num
assembler function contained in PRO.LIB

Purpose:

Time2Num converts a time in string form to an equivalent number
of seconds after midnight.

Syntax:

Time= Time2Num&(T$)

Where:

T$ is a time in the form of "HH:MM:SS", and Time receives an
equivalent long integer value representing the number of seconds.

Comments:

Because Time2Num has been designed as a function, it must be
declared before it may be used.

Time2Num is a powerful routine with two important uses. Besides
allowing what would otherwise be an eight character string to be
packed to only four bytes, it also provides a simple and effective
way to perform time arithmetic.

Once a time has been converted to its equivalent value, you may
add or subtract any number of seconds, and then use the companion
function Num2Time to obtain the result.

T$ = "14:03:22"
Start&= Time2Num&(T$)
Later&= Start&+ 3600
NextHour$ = Num2Time$(Later&)
PRINT "One hour after "; T$; " is "; Next Hour$

Because Time2Num and Num2Time are functions they may also be
used within a print or assignment statement directly:

PRINT "One hour after"; T$; " is " Num2Time$(Later&)

Also see the companion function Num2Time.

7-96 Crescent Software, Inc.

QuickPak Professional Chapter 7

Times2
assembler function contained in PRO.LIB

Purpose:

Times2 will multiply an integer variable times 2, without causing an
overflow if the result exceeds 32,767.

Syntax:
Value= Times2%(Number%)

Where:

Value receives the value of Number% multiplied by 2.

Comments:

Because Times2 has been designed as a function, it must be
declared before it may be used.

Times2 is a fairly specialized routine, but it is included because we
have needed it several times in our own programming. For
example, it can be used to determine the number of bytes in an
integer array, given the number of elements. Notice that when the
returned value exceeds 32,767, QuickBASIC will consider it to be a
negative number.

Crescent Software, Inc. 7-97

I

Chapter 7 QuickPak Professional

Traplnt
assembler function contained in PRO.LIB

Purpose:

Traplnt will constrain an incoming value to within a specified upper
and lower limit.

Syntax:
Limited= Traplnt%(Value%, Lolimit%, Hilimit%)

Where:

Value% is the value to be constrained, LoLimit% is the mimimum
acceptable value, and HiLimit% is the maximum acceptable value.

Comments:

Because Traplnt has been designed as a function, it must be
declared before it may be used.

Traplnt is very useful for avoiding an "Illegal function call" error,
for example when attempting to locate to an illegal row or column.
The examples on the following page show how Traplnt might be
used for this purpose, along with the BASIC code that would
otherwise be needed.

7-98 Crescent Software, Inc.

QuickPak Professional

INPUT "Enter a row and column", Row, Column
LOCATE Trapint%(Row, 1, 25), Trapint%(Column, 1, 80)

vs.

IF Row < 1 THEN
Row= 1

ELSEIF Row> 25 THEN
Row= 25

END IF

IF Column< 1 THEN
Column= 1

ELSEIF Column> 80 THEN
Column= 80

END IF

LOCATE Row, Column

Crescent Software, Inc.

Chapter 7

I

7-99

Chapter 7 QuickPak Professional

ViewFile
BA SIC subprogram contained in VIEWFILE. BAS

Purpose:

ViewFile is a complete pop-up file browsing subprogram.

Syntax:
CALL ViewFile(FileName$, Wide%, High%, Colr%, HiBit%, Action%)

Where:

FileName$ is the name of an ASCII text file to view, Wide% is
how wide the displayed window is to be, and High% is the window
height. Colr % is the combined foreground and background color,
HiBit% is 1 to clear the hi-bit of WordStar type files, and Action%
tells ViewFile how it is to behave (see below). The upper left
corner of the window is located at the current cursor position.

Comments:

Like most of the pop up utilities provided with QuickPak
Professional, ViewFile accepts an action parameter to tell it to open
or close its window. This also allows ViewFile to be called in such
a way that control is returned to your program while the file is still
open.

When ViewFile is called with Action% set to zero, it will behave in
a conventional manner. That is, the underlying screen is saved, the
user can view all they want, and when they press Escape the file is
closed and control returns to the caller.

If Action is instead set to 1, pressing Escape from within ViewFile
tells it to return, but with the file still open and the display intact.
At that point, ViewFile will have already reset Action to 3, which is
the correct value for the next time it is called. To close the file and
restore the original screen, call ViewFile again with an Action of 5.

This is the same system used by the pulldown and vertical menu
programs, as described in that part of this manual. Please
understand that if you do not need or want this "simulated"
multi-tasking capability, simply call View File with an Action of 0.

7-100 Crescent Software, Inc.

QuickPak Professional Chapter 7

The only errors that are likely to be reported by ViewFile would be
caused by a file that isn't there, an invalid drive letter or path, or if
the disk drive is not ready. If an error occurs, the QuickPak
Professional DOSError% and WhichError% functions will be
appropriately set.

ViewFile accommodates files with up to 16,384 lines, and it is
amply demonstrated in the DEMOVIEW.BAS program. This is an
arbitrary limit that may be expanded, however the / AH command
line switch must then be used when starting QuickBASIC or the
BC.EXE compiler. Also see the discussion that accompanies the
COLORS .BAS routine for more information about combined colors.

All of the expected navigating keys are recognized by View File,
including the curson direction keys, PgUp, and PgDn. Also, the
Ctrl-Left Arrow key will return the display to the leftmost column.

Also see the File View assembly language version of this routine.

Crescent Software, Inc. 7-101

I

Chapter 7 QuickPak Professional

VLAdd
assembler subroutine contained in PRO.LIB

Purpose:

VLAdd will add two "very long" integers, and return the result in
another one.

Syntax:

CALL VLAdd(Valuel#, Value2#, Sum#, ErrFlag%)

Where:

Valuel# and Value2# are very long integers in a double precision
"alias", Sum# is a very long that receives the result, and ErrFlag%
indicates if an overflow occurred.

Comments:

Very long integers are discussed in detail in the section of this
manual entitled "Very Long Integers".

7-102 Crescent Software, Inc.

QuickPak Professional Chapter 7

VLDiv
assembler subroutine contained in PRO.LIB

Purpose:

VLDiv will divide two "very long" integers, and return the result
and remainder in two other ones.

Syntax:

CALL VLDiv(Dividend#, Divisor#, Quotient#, Remainder#, ErrFlag%)

Where:

Dividend# and Divisor# are very long integers in a double precision
"alias", Quotient# and Remainder# are very longs that receive the
result, and ErrFlag% indicates if a "divide by zero" was attempted.

Comments:

Very long integers are discussed in detail in the section of this
manual entitled "Very Long Integers".

Dividing very long integers is extremely difficult, and while we
were developing VLDiv we used CodeView to examine the code
produced by QuickBASIC 4, hoping to discover some helpful tips
or techniques.

You may be interested to know that QuickBASIC doesn't even
attempt to divide regular long integers. It simply converts them to
floating point values, and lets the floating point math library do the
work!

Crescent Software, Inc. 7-103

I

Chapter 7 QuickPak Professional

VLMul
assembler subroutine contained in PRO.LIB

Purpose:

VLMul will multiply two "very long" integers, and return the result
in another one.

Syntax:

CALL VLMul(Valuel#, Value2#, Product#, ErrFlag%)

Where:

Valuel# and Value2# are very long integers in a double precision
"alias", Product# is a very long that receives the result, and
ErrFlag% indicates if an overflow occurred.

Comments:

Very long integers are discussed in detail in the section of this
manual entitled "Very Long Integers".

7-104 Crescent Software, Inc.

QuickPak Professional Chapter 7

VLPack
assembler subroutine contained in PRO.LIB

Purpose:

VLPack accepts a very long integer value in the form of a string,
and returns it packed to the correct format in a double precision
"alias" variable.

Syntax:

CALL VLPack(Number$, Value#, ErrFlag%)

Where:

Number$ is a string up to nineteen digits long plus an optional
minus sign, Value# is a double precision variable that receives the
packed information, and ErrFlag% indicates whether the number
was packed correctly.

Comments:

The only errors that are likely to occur when using VLPack is
giving it a number that contains too many digits (or a null string),
or including non-numeric characters.

Very long integers are discussed in detail in the section of this
manual entitled "Very Long Integers".

Crescent Software, Inc. 7-105

I

Chapter 7 QuickPak Professional

VLSub
assembler subroutine contained in PRO.LIB

Purpose:

VLSub will subtract two "very long" integers, and return the result
in another one.

Syntax:
CALL VLSub(Valuel#, Value2#, Difference#, ErrFlag%)

Where:

Valuel# and Value2# are very long integers in a double precision
"alias", Difference# is a very long that receives the result, and
ErrFlag% indicates if an underflow occurred.

Comments:

Very long integers are discussed in detail in the section of this
manual entitled "Very Long Integers".

7-106 Crescent Software, Inc.

QuickPak Professional Chapter 7

VLUnpack
assembler subroutine contained in PRO.LIB

Purpose:

VLUnpack accepts a very long integer value in the form of a double
precision "alias", and returns it in string form suitable for being
displayed or printed.

Syntax:

Number$= SPACE$(20)
CALL VLUnpack(Alias#, Number$, ErrFlag%)

Where:

Alias# is a double precision variable that contains the very long
value, Number$ is a string long enough to hold the returned
information (up to twenty digits including a possible minus sign),
and ErrFlag% indicates whether the number was successfully
unpacked.

Comments:

The only error that is likely to occur when using VLUnpack is
giving it a string that contains other than twenty digits to
accommodate the returned result.

Very long integers are discussed in detail in the section of this
manual entitled "Very Long Integers".

Crescent Software, Inc. 7-107

I

Chapter 7 QuickPak Professional

WeekDay
assembler function contained in PRO.LIB

Purpose:

WeekDay will return the day of the week (1 through 7) given a
legal DOS date in a string form.

Syntax:
Day= Week0ay%{0$}

Where:

D$ is a string date in the form "MMDDYY", or "MM-DD-YY",
or "MM/DD/YYYY", and so forth, and
Day receives the equivalent number.

Comments:

Because WeekDay has been designed as a function, it must be
declared before it may be used.

WeekDay calls on an existing DOS service to do the actual
calculation, therefore, the legal range of dates is limited to that of
DOS: 01-01-1980 through 12-31-2099.

Also see the related routines Num2Day and Date2Day.

Notice that WeekDay modifies the system date and time
temporarily, and should not be called repeatedly inside a loop.
Doing that will cause your system clock to lose time, or possibly
even run backwards!

7-108 Crescent Software, Inc.

QuickPak Professional Chapter 7

WordWrap
BASIC subprogram contained in WORDWRAP.BAS

Purpose:

WordWrap accepts text that is contained in a single long string, and
prints it to the screen with word wrap.

Syntax:

CALL WordWrap(Message$, Wide%)

Where:

Message$ contains the text to be printed, and Wide% indicates the
right margin where the text is to be wrapped.

Comments:

The QuickPak Professional MsgBox subprogram is far more
sophisticated than this one, but WordWrap is provided for several
reasons. One is that it is very easy to modify to use a printer instead
of the screen. The other is that you may not need the extra
capabilities (and code size) that MsgBox offers.

Printing always begins at column one, however comments in the
WordWrap source code show how to modify it to start printing at
any specified left margin.

Crescent Software, Inc. 7-109

Chapter 7 QuickPak Professional

XMSManager
assembler subroutines and functions in PRO.LIB

The QuickPak Professional XMS Memory Manager is a complete
set of subroutines that allow you to store and retrieve any type of
data using extended memory. Extended memory is the memory
starting above 1,024K on a 286 or better machine. These routines
access this memory using Microsoft's extended memory
specification version 2.0.

VERY IMPORTANT

These routines require an 80286 or later computer only. The
GetCPU function will allow you to determine what processor is
currently installed in the host PC.

These routines are designed to emulate the QuickPak Professional
EMS routines. However, some routines are not directly applicable
to XMS, and others have parameters passed by value instead of
reference for increased speed and reduced code size. Therefore, it
is important that you declare these routines before using them.
Each XMS routine is explained in detail on the pages that follow,
along with a brief example showing the correct usage. All of these
routines are written in assembly language and are contained in
PRO.LIB and PRO7.LIB.

ACCESSING XMS

To access XMS, you first need to load an XMS memory manager
such as HIMEM.SYS which Microsoft provides with DOS 5.0 and
Windows 3.0. Other memory managers such as QEMM386 and
386MAX also provide XMS memory.

The XMS specification provides three types of memory to your
system. The first is regular extended memory; you allocate this
memory in kilobytes and it can be used to store data only. The
second type of XMS is the high memory area (HMA). This is the
first 64K segment above the 1,024K boundary.

7-110 Crescent Software, Inc.

QuickPak Professional Chapter 7

Because of a quirk in Intel processors, DOS programs can access
this segment in real mode, and also execute code there. If you
loaded DOS 5.0 high or are using QBX then you are taking
advantage of the HMA. Only one program can control the HMA,
and you cannot take advantage of it in your own BASIC programs.

The last type of memory is called upper memory blocks (UMB).
This is the memory between 640K and 1024K that is available on
80386/486 and some 80286 machines. The advantage of using
UMB memory over conventional XMS memory is that you can
access it directly with the BCopy routine, instead of having to move
it into lower memory first by calling an XMS routine.

USING THE XMS ROUTINES

Before any XMS routines may be used in a program, the
XMSLoaded function must be invoked to determine if XMS
memory is available. Unlike the EMS routines which are invoked
internally using an interrupt call, the XMS routines are invoked by
calling a specific address. This address is determined by
XMSLoaded, which is why it must be called first.

For most applications you will use four of these routines as follows.
The XMSLoaded function is first used to determine if XMS
memory is installed and available. The Array2XMS and
XMS2Array subroutines may then be used to copy data to and from
XMS memory. Finally, XMSRelMem will be used to release
memory when it is no longer needed.

One important difference between these XMS routines and the EMS
routines is in the use of an internal BASIC routine called B OnExit.
B _ OnExit is a hook into BASIC's runtime that lets you specify a
routine that BASIC will call before your program terminates. What
this means is that all XMS memory you allocate will be
automatically released when your program terminates. This is very
useful when working in the QB environment, and you are likely to
stop and restart your program many times without calling the
routines that free the XMS memory.

However, there may be times when you want some XMS memory
to remain after your program has terminated. For instance, you can
pass a large amount of data between executable programs by storing
it in XMS, and then passing to the second program the handle of the
XMS block. We have provided the routine KeepXMSHandle for
just this purpose.

Crescent Software, Inc. 7-111

I

I

Chapter 7 QuickPak Professional

A quirk in the XMS specification requires that all memory moves
be an even number of bytes. Although we allow you to use a data
structure with an odd length in the XMSGetlEl and XMSSetlEl
routines, we require that you have an even amount of bytes when
using Array2XMS and XMS2Array. This is done to keep code size
small and to increase the speed of the routines.

When using XMSGetlEl and XMSSetlEl, it is better if you work
with a data structure with an even length. Although this is not
strictly required, when these routines are used with an odd-length
data structure they have to make two XMS memory accesses to
retrieve the information. If you are using an odd-length data
structure with the Array2XMS and XMS2Array routines, then you
have to use an even number of elements. Although the discussion
that follows describes storing and retrieving arrays, Array2XMS
and XMS2Array may in fact be used with any contiguous block of
memory.

When Array2XMS is called, the correct amount of memory will be
allocated for you automatically, based on the number of elements
you are storing and the size of each element. Besides allocating
memory, Array2XMS also returns a "handle" number that will be
used to retrieve the array later. This handle remains active until the
XMSRelMem routine is called, or your program terminates and the
memory is released back to the system.

Each time Array2XMS is called a new handle is obtained. Thus, if
you intend to save data repeatedly to the same XMS memory you
should call XMSRelMem before each subsequent save. However,
when XMS2Array is used to retrieve an array the memory is not
automatically released. Therefore, you may retrieve the array as
many times as you'd like, and call XMSRelMem only once when
the memory is no longer needed. This is the same method the EMS
routines use, and we have found it to be the most flexible.

A list of the possible XMS error codes is shown in the table on the
following page. Similar to the way errors are reported for the
various QuickPak Professional DOS routines, XMS errors are
detected by querying the XMSError function. This function returns
the status of the most recent XMS service, and is either zero
meaning no error occurred, or it contains an error code. The
official XMS errors have values of 128 or higher, and we have
added a few of our own starting at 1.

7-112 Crescent Software, Inc.

QuickPak Professional Chapter 7

XMS ERROR CODES

Hex Dec Meaning
OOH 0 No error
OlH 1 XMSLoaded hasn't been used yet to initialize

these routines
02H 2 The element length was given as zero
03H 3 The number of elements was given as zero
80H 128 Function not implemented
81H 129 VDISK device is detected
AOH 160 All available extended memory is allocated
AlH 161 All available extended memory handles are in use
A2H 162 Handle is invalid
A3H 163 Source handle is invalid
A4H 164 Source offset is invalid
ASh 165 Destination handle is invalid
A6H 166 Destination offset is invalid
A7H 167 Length is invalid
ASH 168 Move has invalid overlap
A9H 169 A parity error occurred
BOH 176 A smaller UMB is available
BlH 177 No UMBs are available
B2H 178 UMB segment number is invalid

Some of these routines have been designed as functions while others
pass parameters by value, so it is important that they be declared
before you use them. A complete demonstration including
appropriate declarations is given in the DEMOXMS .BAS example
program.

Crescent Software, Inc. 7-113

I

I

Chapter 7 QuickPak Professional

XMS FUNCTIONS

XMSError - Function

Reports the status of the most recent XMS operation.

DECLARE FUNCTION XMSError% ()
IF XMSError% THEN PRINT "Error number"; XMSError%; "occurred."

XMSLoaded - Function

Returns -1 if the XMS driver software is loaded, or O if it is not.

7-114

DECLARE FUNCTION XMSLoaded% ()
IF XMSLoaded% THEN

PRINT "XMS memory is loaded on this PC."
ELSE

PRINT "Sorry, this PC does not have XMS."
END IF

Crescent Software, Inc.

QuickPak Professional

XMS SUBROUTINES

XMSAllocMem - Subroutine

Allocate a specific number of kilobytes of XMS memory.

DECLARE SUB XMSAllocMem (BYVAL NumK%, Handle%)
CALL XMSAllocMem (NumK%, Handle%)

Chapter 7

Where NumK% is the number of kilobytes of XMS memory
requested, and Handle% is returned to identify the memory for later
use.

XMSRelMem - Subroutine

Releases all memory associated with a specified handle.

DECLARE SUB XMSRelMem (BYVAL Handle%)
CALL XMSRelMem (Handle%)

Array2XMS - Subroutine

Copies all or part of an array or other block of memory into XMS
memory.

CALL Array2XMS (SEG Array(Start), E1Size%, NumEls%, Handle%)

or

CALL Array2XMS (BYVAL Segment%, BYVAL Address%, NumBytes%,
1, Handle%) -

Where Array(Start) is any numeric or TYPE array, E1Size% is the
size of each element in bytes, NumEls % is the total number of
elements to copy into XMS memory, and Handle% is the handle
returned by Array2XMS. The second example shows how to store
any contiguous block of memory.

Because of a requirement in the XMS specification, the total
number of bytes must be even. This limitation requires you to have
an even length data size or an even number of array elements.

The E1Size% parameter would be 2 for an integer array, 4 for a
long integer or single precision array, and 8 for a currency or
double precision array. Array2XMS also accepts the negative code
values used by QuickPak Professional TYPE sort routines. To store

Crescent Software, Inc. 7-115

I

I

Chapter 7 QuickPak Professional

fixed-length string and TYPE arrays in extended memory, E1Size%
will be the length of each element. However, to store a
fixed-length string array you must first define it as a TYPE. This is
described in the section "Calling with Segments".

To store a conventional (not fixed-length) string array in XMS
memory you must first store it in an integer array using the
QuickPak Professional StringSave routine. Then the integer array
may be copied into XMS memory. To retrieve the string array you
would use XMS2Array to copy it back to an integer array, and then
use StringRest to place it back into the string array. StringSave and
StringRest are described in the section entitled "String Manager
Routines".

Array2XMS may be used to store a single item, or any contiguous
block of memory by specifying the number of bytes in E1Size%,
and using 1 for NumEls % . Be sure to make ElSize % an even
number or else you will get an error 167 "Invalid Length". The
actual number of bytes copied into extended memory is calculated
within Array2XMS by multiplying E1Size% times NumEls%. If the
number of bytes is 16K (16,384) bytes or less, simply set E1Size%
to the number of bytes and use 1 for NumEls % . To store, say, 64K
(65536 bytes) you would specify E1Size% as 16384 and set
NumEls% to 4. Any similar combination will also work. The
example below shows how to save a single text screen from a color
display.

CALL Array2XMS(BYVAL &HB800, BYVAL 0, 4000, 1, Handle)

Then to display the screen later you would use:

CALL XMS2Array(BYVAL &HB800, BYVAL 0, 4000, 1, Handle)

If there is not enough XMS memory available XMSError will
return 160. If there are no XMS handles available XMSError
returns 161. If you specify an odd number of bytes to transfer, then
XMSError will return error 167.

XMS2Array - Subroutine

Retrieves an array or other block of memory from XMS memory.

CALL XMS2Array (SEG Array(Start), E1Size%, NumE1s%, Handle%)

7-116 Crescent Software, Inc.

QuickPak Professional

or

CALL XMS2Array (BYVAL Segment%, BYVAL Address%, NumBytes%,
1, Handle%)

Chapter 7

Where Array(Start) is any numeric or TYPE array, ElSize % is the
size of each element in bytes, NumEls % is the total number of
elements to copy from XMS memory, and Handle% is the handle
that was assigned by Array2XMS when the array was stored. It is
essential that the array being restored has been sufficiently
dimensioned to hold the information being copied to it.

This routine is the exact opposite of Array2XMS, and the
parameters have the same meaning as in that routine. XMS2Array
does not release the XMS memory assigned to Handle%. If you
want to release it you must call XMSRelMem.

XMSGetlEI - Subroutine

XMSGetlEl allows retrieving a single element from extended
memory.

CALL XMSGetlEl(SEG Value, E1Size%, E1Num%, Handle%)

Where Value is any variable, and E1Size% is either its length in
bytes or a special code that indicates the length (see below).
ElNum % is the element number (based at one, not zero), and
Handle% is the XMS handle that was assigned when the array was
first saved.

Although Array2XMS and XMS2Array routines require an even
number of bytes, this isn't the case with XMSGetlEl. However, it
takes two XMS memory accesses to get an odd length element, and
it takes three extended memory accesses to set an odd length
element. Therefore, your program will run more quickly if you can
keep your elements at an even length.

XMSGetlEl lets you retrieve a single element from an array that
has been saved in extended memory, when you don't want to have
to retrieve the entire array. Another important use would be to
access a single screen from among several that are being stored in
XMS memory. Because the same routine may be used to process
different types of variable, you should declare it using the AS ANY
option:

DECLARE SUB XMSGetlEl(SEG Value AS ANY, E1Size%, ElNum%, Handle%)

Crescent Software, Inc. 7-117

I

I

Chapter 7 QuickPak Professional

The ElSize% variable may optionally be the special size code that is
used by the various QuickPak Professional TYPE array sorts.

Also see the companion routine XMSSetlEl which assigns a single
element to an array or block of data in XMS memory.

XMSSetlEI - Subroutine

XMSSetlEl allows assigning a single element in an array that is
stored in extended memory.

CALL XMSSetlEl(SEG Value, ElSize%, E1Num%, Handle%)

Where Value is any variable, and ElSize% is either its length in
bytes, or a special code that indicates the length (see below).
ElNum % is the element number (based at one, not zero), and
Handle% is the XMS handle that was assigned when the array was
first saved.

Although Array2XMS and XMS2Array routines require an even
number of bytes, this isn't the case with XMSSetlEl. However, it
takes two XMS memory accesses to get an odd length element, and
it takes three extended memory accesses to set an odd length
element. Therefore, your program will run more quickly if you can
keep your elements at an even length.

XMSSetlEl lets you assign a single element from an array that has
been saved in extended memory, when you don't want to have to
retrieve the entire array, make the assignment, and then save it back
again. Another important use is to store multiple screen images in
XMS memory.

Because the same routine may be used to process different types of
variable, you should declare it using the AS ANY option:

DECLARE SUB XMSSetlEl(SEG Value AS ANY, ElSize%, E1Num%, Handle%)

The ElSize % variable may optionally be the special size code that is
used by the various QuickPak Professional TYPE array sorts.

Also see the companion routine XMSGetlEl which allows you to
assign a single element.

7-118 Crescent Software, Inc.

QuickPak Professional Chapter 7

XMSinfo - Subroutine

XMSinfo retrieves several useful items of information about the
XMS memory in your system, and stores it in a TYPE variable.
The TYPE structure used is as follows:

TYPE XMSinfoType
XMSVersion AS INTEGER
DriverVersion AS INTEGER
NumHandles AS INTEGER
FreeMem AS INTEGER
Largest AS INTEGER
HMAAvail AS INTEGER
LargestUMB AS LONG

END TYPE

Here, XMSVersion is the version of the XMS specification your
driver conforms to, and DriverVersion is the version of your
particular driver. Both of these values are stored with the major
version times 100. For example, version 6.25 will be reported as
the value 625.

NumHandles is the number of free handles available. FreeMem is
the total amount of XMS memory available in kilobytes, and
Largest is the largest single block of XMS memory you can allocate
at a single time in kilobytes.

HMAAvail is a boolean (true/false) value that tells you if the HMA
(High Memory Area) is available. It will be -1 if it is free, or O if
another program has control of it.

LargestUMB is the largest Upper Memory Block you can allocate,
in bytes. This does not represent the total amount of free UMBs,
however, because upper memory is usually fragmented.

DEMOXMS .BAS contains examples on calling this routine and
displaying the information returned.

XMSSetError - Subroutine

Allows a BASIC program to set or clear the XMSError value.

DECLARE SUB XMSSetError (BYVAL Value%)
CALL XMSSetError (Value%)

Crescent Software, Inc. 7-119

I

I

Chapter 7 QuickPak Professional

KeepXMSHandle - Subroutine

Allows you to retain XMS memory after your program terminates.

DECLARE SUB KeepXMSHandle (BYVAL Handle%)
CALL KeepXMSHandle (Handle%)

One important difference between the XMS memory manager and
the EMS memory manager is the use of the B _ OnExit routine.
B _ OnExit is a hook into the QuickBASIC runtime that lets you tell
BASIC to call a particular routine automatically when your program
terminates. This allows all of your XMS memory to be released
back to the system when your program terminates.

Using B _ OnExit is very useful when working in the environment
where you are apt to restart your program many times without first
calling your normal termination routine. However, there are times
when you want some XMS memory you have allocated to remain
after your program has terminated. KeepXMSHandle lets you pass
data between programs without having to store it on disk.

UMBAllocMem - Subroutine

Allocates a specific number of bytes of upper memory.

DECLARE SUB UMBAllocMem (BYVAL NumBytes%, Segment%)
CALL UMBAllocMem (NumBytes%, HandleSegment%)

Where NumBytes % is the number of bytes of upper memory
requested, and Segment% is the segment of the block that was
allocated. You would then use BCopy or BCopyT to move data in
and out of this block. Upper memory is the memory located
between 640K and 1024K on 80386/486 and some 80286 machines.

UMBRelMem - Subroutine

Releases all memory associated with a specified upper memory
segment.

DECLARE SUB UMBRelMem (BYVAL Segment%)
CALL UMBRelMem (Segment%)

7-120 Crescent Software, Inc.

ChapterB
String Manipulation Routines

I

I

QuickPak Professional Chapter8

ASCII

assembler function contained in PRO.LIB

Purpose:

ASCII obtains the ASCII value for a string exactly as BASIC's ASC
function does, but it will not cause an "Illegal Function Call" error
if the string is null.

Syntax:

A= ASCII%(Any$)

Where:

Any$ is any string, and A receives the ASCII value of its first
character. If the string is null, ASCII instead returns -1.

Comments:

Because ASCII has been designed as a function, it must be declared
before it may be used.

ASCII was created to avoid the extra steps needed to insure that a
string isn't null before ASC can be used. Attempting to obtain the
ASCII value of a null string using the BASIC ASCO function will
cause an Illegal Function Call error. A quick look at QuickBASIC's
ASC under Code View also reveals that our ASCII is substantially
faster.

Before ASCII, you would need to add additional code to your
programs as shown below:

X$ = INKEY$
IF LEN(X$) THEN

IF ASC(X$) => 65 THEN
PRINT "You pressed a letter key"

END IF
END IF

Crescent Software, Inc. 8-1

I

I

Chapter8

8-2

ASCII instead lets you use:

IF ASCII%(INKEY$) => 65 THEN
PRINT "You pressed a letter key"

END IF

QuickPak Professional

Crescent Software, Inc.

QuickPak Professional Chapter8

Blanks
assembler function contained in PRO.LIB

Purpose:

Blanks will report the number of leading blanks in the specified
string. Both CHR$(32) and the CHR$(0) "null" character are
recognized.

Syntax:

NumBlanks = Blanks%(Work$)

Where:

NumBlanks receives the number of leading blank and/or CHR$(0)
bytes in Work$.

Comments:

Because Blanks has been designed as a function, it must be declared
before it may be used.

Blanks is useful for finding where within a string the actual text
begins. Other methods would require either stepping through the
string a character at a time using MID$, or comparing the length of
the string with the length of a copy that had been processed with
LTRIM$.

Either of those methods would be extremely slow compared to using
Blanks, and of course LTRIM$ does not consider CHR$(0) as a
blank. Recognizing CHR$(0) is important with fixed-length strings,
because QuickBASIC uses that to initialize each string.

Crescent Software, Inc. 8-3

I

I

Chapter8 QuickPak Professional

Compact
assembler function contained in PRO.LIB

Purpose:

Compact compresses a string by removing all embedded blanks.

Syntax:

NewString$ = Compact$(0ld$)

Where:

NewString$ is assigned from Old$, but with all CHR$(32) blanks
removed.

Comments:

8-4

Because Compact has been designed as a function, it must be
declared before it may be used.

Unlike most functions, the original string is also compacted. In
designing Compact we would have preferred to not tamper with the
original string. However, that would require reserving sufficient
memory to hold the longest possible string that Compact would act
on.

If the original string must be preserved you should use parentheses to
force BASIC to create a copy of it.

NewString$ = Compact$((0ld$))

Crescent Software, Inc.

QuickPak Professional Chapter 8

Encrypt and Encrypt2
assembler subroutines contained in PRO.LIB

Purpose:

Encrypt and Encrypt2 will take any conventional or fixed-length
string, and encrypt it using a password you provide.

Syntax:

CALL Encrypt(X$, Password$)

or

CALL Encrypt2(X$, Password$)

Where:

X$ is the string to be encrypted, and Password$ is the password to
be used. Notice that these routines are intended both to encrypt the
string, and to decrypt it again later using the same password. Also
notice that when using Encrypt2, the password must be less than 44
characters long.

Comments:

Encrypt2 is based on a fairly simple algorithm that is also
reasonably secure. While the Secret Service or the FBI will
probably find it inadequate, it would be pretty difficult for most
folks to crack. Encrypt is somewhat less secure, and is provided
solely for compatibility with earlier versions of QuickPak and
QuickPak Professional. Also for compatibility, the FileCrypt
BASIC subprogram still uses the original Encrypt routine. We
recommend that you modify the BASIC source code to use
Encrypt2, unless you already have files that were encrypted using
Encrypt.

There are a few points to consider that will maximize the security
provided by Encrypt.

Crescent Software, Inc. 8-5

I

Chapter 8 QuickPak Professional

8-6

1) Use a long password.
2) Don't select a password that could be easily guessed.
3) Double-encrypt the string.

Using a long password will minimize the chance of creating a
recognizable repeating pattern.

If you use a password such as your last name or birthday, you will
make it that much easier for someone to guess. Of course, don't go
overboard with something like
"J@GE#SVEY34KJFDBE!OSNBDN", or you'll never remember it
yourself. MCI Mail uses a clever system of nonsense letters that are
also easy to pronounce, such as "Y AXALUPA" and "ZIGUMINI".

If the password is first encrypted with another one, the protection
will be much more effective. The FileCrypt subprogram shows an
effective use of this principle. Of course, you must then decrypt the
string twice in the reverse order later.

Encrypt and Encrypt2 use the XOR command to apply the
characters in the password against those in the string being
encrypted. The equivalent BASIC algorithm for Encrypt is:

L = LEN(PassWord$)
FOR X = 1 TO LEN(X$)

Pass= ASC(MID$(PassWord$, (X MOD L) - L * ((X MOD L) = 0), 1))
MID$(X$, X, 1) = CHR$(ASC(MID$(X$, X, 1)) XOR Pass)

NEXT

Encrypt2 is nearly identical, except the characters in the password
are altered as the encryption progresses.

Crescent Software, Inc.

QuickPak Professional Chapter8

Far2Str
assembler function contained in PRO.LIB

Purpose:

Far2Str will retrieve an ASCIIZ string from anywhere in memory,
and return it as a conventional BASIC string.

Syntax:

Work$= Far2Str$(BYVAL Segment%, BYVAL Address%)

Where:

Segment% and Address% specify where in memory the string is
located.

Comments:

Because Far2Str has been designed as a function, it must be
declared before it may be used.

An ASCIIZ string is a string whose end is marked with a CHR$(0)
zero byte (hence the "Z"), such as the strings returned by DOS and
the C language. We wrote this routine to simplify access to Jake
Geller's Spell Engine program which (erroneously) assumes that all
programmers use C.

If you are using an array to store far string data, then you can save
a few bytes each time Far2Str is used by declaring and calling it
like this:

DECLARE FUNCTION Far2Str$(SEG FarString AS ANY)
Work$= Far2Str$(Array(O))

If you are accessing an ASCIIZ string in near memory, simply use
VARSEG (AnyVar) as the segment parameter.

Note that Far2Str is limited to a maximum of 40 characters. This
limit reflects the number of bytes reserved in near memory for the
function output. You can of course change this by modifying the
assembler source.

Crescent Software, Inc. 8-7

I

Chapter 8 QuickPak Professional

FUsing
assembler function contained in PRO.LIB

Purpose:

FUsing accepts an incoming number and image string, and returns
it as a formatted string much like BASIC's PRINT USING would.

Syntax:

Formatted$= FUsing$(STR$(Number), Image$)

Where:

Number is any number whether integer, single, or double precision,
and Image$ indicates how the result is to be formatted. If the
number will not fit within the allotted space, the first digit of the
returned string will be replaced with a percent sign (%) .

Comments:

8-8

Because FU sing has been designed as a function, it must be
declared before it may be used.

By using the STR$ function, we are letting BASIC do most of the
dirty work to interpret the floating point numbers. This also lets
FUsing accept any type of numeric variable. Normally, assembler
routines must be written to expect one type of variable only. If you
do not use BASIC's STR$ function and directly pass a string to
FU sing, be sure to add an extra space to the beginning of the
number string that you are formatting, i.e., 11 123411 becomes 11

1234 11
• Most of the formatting codes that PRINT USING

recognizes are supported, including commas, dollar signs, and
leading asterisks.

It is very important that you not include any blank spaces within the
image string. For example 11 ##.## 11 is perfectly legal, while "
.##" will not work as expected.

The table below summarizes FUsing's capabilities:

represents each digit position
specifies a decimal point

Crescent Software, Inc.

QuickPak Professional Chapter8

+

**
$$
**$

causes the sign of the number (+ or -) to be added (the
sign must be the first character in the field)
replaces leading spaces in the field with asterisks
adds a dollar sign to the left of the number
combines the effects of ** and $$
specifies that commas are to be added to the formatted
string

FUsing is demonstrated in the DEMOCM.BAS example program.

Although BASIC accepts multiple commas in the image string,
FU sing requires only one. If there is a decimal point within the
string, the comma must be placed just before it. Otherwise, the
comma must be the last character.

Also see the description for PUsing elsewhere in this manual.

Crescent Software, Inc. 8-9

I

I

Chapter8 QuickPak Professional

InCountandlnCount2
assembler functions contained in PRO.LIB

Purpose:

InCount will quickly report how many times one string occurs
within another, and the search string may contain any number of
"?" wild cards. InCount2 works the same way, but searching is
case-insensitive.

Syntax:
Count= InCount%(Source$, Search$)

Where:

Source$ and Search$ are either conventional or fixed-length strings,
and Count receives the number of times Search$ occurs in Source$.

Comments:

Because InCount and InCount2 have been designed as functions,
they must be declared before being used.

InCount is used to advantage by the QuickPak Professional
ExpandTab$ and Parse$ functions. Of course, it could have many
uses in your own programs as well.

For example, if you accept command line switches such as "ID" or
"IT", InCount would quickly tell how many have been entered by
the user:

NumSwitches = InCount(COMMAND$, "/")

InCount2 performs the identical function, except that it ignores
capitalization in both strings as it searches. Both routines accept any
number of the "?" wild cards in the search specification.

8-10 Crescent Software, Inc.

QuickPak Professional Chapter8

InCountTbl
assembler function contained in PRO.LIB

Purpose:

InCountTbl returns the number of characters in a string that match
any of the characters in a table.

Syntax:

Count= InCountTbl%(Source$, Table$)

Where:

Source$ is the string being examined, and Table$ holds a list of
characters to search for.

Comments:

Because InCountTbl has been designed as a function, it must be
declared before it may be used.

InCountTbl is useful in a variety of situations, for example when
searching for one or more printer control codes that have been
imbedded within a string. In the case of a print routine that must
also deal with margins, it would be necessary to know the length of
each string, but without regard to the printer codes. The following
example shows this in context.

Work$= CHR$(15) + "This is a test" '15 is an Epson code
Table$= CHR$(27) + CHR$(15) + CHR$(2) 'some control codes
Actuallen = LEN(Work$) - InCountTbl%(Work$, Table$)
' the answer is 14

Crescent Software, Inc. 8-11

I

I

Chapter8 QuickPak Professional

lnstrTbl and InstrTbl2
assembler functions contained in PRO.LIB

Purpose:

InstrTbl and InstrTbl2 will quickly search a string for the first
occurrence of any characters that are specified in a table string.
InstrTbl honors capitalization, while InstrTbl2 does not.

Syntax:

Position= lnstrTb1%(Start%, Source$, Table$)

Where:

Start% specifies where in the source string searching is to begin,
Source$ is the string being examined, and Table$ contains one or
more characters to search for. Position then receives the position
where the first match was found. If there is no match, Position will
receive zero.

Comments:

Because InstrTbl and InstrTbl2 have been designed as functions,
they must be declared before they may be used.

Unlike BASIC's INSTR function, the Start% parameter must
always be given. If you intend to search the entire source string,
then Start% should be set to 1. A typical use of InstrTbl2 is given
below:

Source$= "FIND ME HIDING HERE'' 'search this string
Table$= "aeiou" 'find the first vowel
Position= InstrTbl2%(1, Source$, Table$)
' Position receives 2

Also see the related routines InstrTblB and InstrTblB2, which
search backwards through a string.

8-12 Crescent Software, Inc.

QuickPak Professional Chapter 8

lnstrTblB and lnstrTblB2
assembler functions contained in PRO.LIB

Purpose:

InstrTblB and InstrTblB2 will search a string backwards for the first
occurrence of any characters that are specified in a table. lnstrTblB
honors capitalization, while InstrTblB2 does not.

Syntax:

Position= InstrTblB%(Start%, Source$, Table$)

Where:

Start% specifies where in the source string searching is to begin,
Source$ is the string being examined, and Table$ contains one or
more characters to search for. Position then receives the position
where the first match closest to the end of the string was found.

Comments:

Because InstrTblB and InstrTblB2 have been designed as functions,
they must be declared before they may be used.

Unlike BASIC's INSTR function, the Start% parameter must
always be given. If you intend to search the entire source string,
then Start% should be set to -1. A typical use of InstrTblB is given
below:

Source$= "FIND 987 HIDING" 'search this string
Table$= "0123456789" 'find the last digit
Position= lnstrTblB%(-1, Source$, Table$)

'Position receives 8

Also see the related routines InstrTbl and InstrTbl2, which search
forward through the string.

Crescent Software, Inc. 8-13

I

I

Chapter 8 QuickPak Professional

LongestStr
assembler function contained in PRO.LIB

Purpose:

LongestStr returns the length of the longest string in an entire array.

Syntax:

Maxlength = LongestStr%(Array$())

Where:

MaxLength receives the length of the longest string contained in
Array$O.

Comments:

Because LongestStr has been designed as a function, it must be
declared before it may be used.

LongestStr is useful in a variety of situations, for example to
determine how wide to make a menu that will display an entire
array. Unlike most of the QuickPak Professional assembler
functions that require passing an entire array by specifying its first
element, LongestStr expects the array to be passed using empty
parentheses. If you specify an array other than a conventional (not
fixed-length) string, LongestStr will return a value of zero.

See the LONGSTR.BAS demonstration program for an example of
how LongestStr is declared and used.

8-14 Crescent Software, Inc.

QuickPak Professional Chapter 8

LowASCII
assembler subroutine contained in PRO.LIB

Purpose:

Low ASCII will strip the "high bit" from all of the characters in a
specified string.

Syntax:

CALL LowASCII(X$}

Where:

X$ is the string to be processed.

Comments:

LowASCII is primarily intended to fix data that is in the format
used by WordStar and some other word processors. It is equally
useful for printers that can't accept characters with an ASCII value
greater than 127.

Also see the related routines Translate and RemCtrl.

Crescent Software, Inc. 8-15

I

I

Chapter8 QuickPak Professional

Lower
assembler subroutine contained in PRO.LIB

Purpose:

Lower will quickly convert all of the alphabetic characters in a
specified string to lower case.

Syntax:

CALL Lower(X$)

Where:

X$ is the string to be processed.

Comments:

Even though QuickBASIC 4 provides a built-in LCASE$0 function,
Lower is provided because it is considerably faster. One of the
problems with LCASE$ (and UCASE$) is that they must be used as
a function. That is, in order to convert a string it must be reassigned
which takes time:

X$ = LCASE$(X$)

Lower instead scans through the named string very quickly,
converting only the upper case alphabetic characters.

Also see the related routine Upper.

8-16 Crescent Software, Inc.

QuickPak Professional Chapter8

LowerThl
assembler subroutine contained in PRO.LIB

Purpose:

LowerTbl will convert all of the characters in a string to lower
case, and it also looks in a supplied table to determine how to
handle foreign characters.

Syntax:
CALL LowerTbl(Work$, Table$)

Where:

Work$ is the string to be processed, and Table$ holds one or more
pairs of lower and upper case extended characters.

Comments:

LowerTbl was written to accommodate our European friends,
although it could also be used as a general purpose table-driven
character substitution routine. The table string comprises pairs of
characters, with the first in each pair being the lower case version,
and the second its upper case counterpart. Though we could have
hard-coded the conversions into the routine, it would need to be
changed for different languages. For example, the character
conversions that are used for German are not necessarily the same
as those for other languages. A typical table would be assigned like
this:

Table$= "i!AoOUOnN"

Notice that normal characters are converted to lower case regardless
of the table, and Table$ is needed solely to accommodate the
additional characters.

Also see the related routine UpperTbl, which converts a string to
upper case.

Crescent Software, Inc. 8-17

I

Chapter 8 QuickPak Professional

MidChar
assembler function contained in PRO.LIB

Purpose:

MidChar returns the ASCII value for a single character within a
string.

Syntax:
Char= MidChar%(Work$, Position%)

Where:

Char receives the ASCII value for the specified character, or -1 if
Position% is negative or past the end of Work$.

Comments:

Because MidChar has been designed as a function, it must be
declared before it may be used.

MidChar (and its companion, MidCharS) lets you access characters
in a string much faster than with BASIC's MID$. These were
originally written for our P.D.Q. product, but they are so useful we
have added them to QuickPak Professional as well.

The first example below shows how MidChar is used, and the
second shows an equivalent BASIC statement.

Char= MidChar%(Work$, Position%)
Char= ASC(MID$(Work$, Position%, 1))

Every time you use the MID$ function a copy of the specified
portion of the string is created, which takes time. Further, string
operations and comparisons are always slower than integer
operations. Therefore, MidChar is most useful when examining
characters in the string, perhaps to parse a file name for the path or
drive letter as shown below. Mid Char is approximately five times
faster than BASIC's MID$ when using QuickBASIC or near strings
in BASIC PDS.

8-18 Crescent Software, Inc.

QuickPak Professional Chapter 8

DEFINT A-Z
Fi leName$ = "C:\SUBDIR1\SUBDIR2\FILENAME.EXT"
FOR X = LEN(FileName$} TO 1 STEP -1 'walk backwards

IF MidChar%(FileName$, X) = 92 THEN '92 = ASC("\")
Path$= LEFT$(FileName$, X) 'isolate the path
FileName$ = MIO$(FileName$, X + 1) 'and then the name
EXIT FOR 'no need to continue

END IF
NEXT

I

Crescent Software, Inc. 8-19

I

Chapter8 QuickPak Professional

MidCharS
assembler subroutine contained in PRO.l/8

Purpose:

MidCharS inserts a single character into a string much faster than
using the MID$ statement.

Syntax:

CALL MidCharS(Work$, BYVAL Position%, BYVAL Char%)

Where:

CHR$(Char%) is assigned into Work$ at the indicated position. If
Position% is less than 1 or greater than the length of Work$ the
request is ignored.

Comments:

MidCharS (the "S" stands for Statement as opposed to Function)
complements the MidChar function, and it is much more efficient
than using the statement form of BASIC's MID$ when inserting a
single character.

Using MidCharS adds only 17 bytes of code to a program,
compared to 25 for the following BASIC equivalent:

MID$(Work$, Position, 1) = Char$

Like MidChar, MidCharS is five times faster than BASIC with near
strings.

8-20 Crescent Software, Inc.

QuickPak Professional Chapter8

Notlnstr
assembler function contained in PRO.LIB

Purpose:

Notlnstr reports the first location in one string that does not match
any of the characters in another string.

Syntax:
Position%= Notlnstr%(Start%, Searched$, Table$)

Where:

Position receives the offset of the first character in Searched$ that
doesn't match any of the characters in Table$. If all characters
match, Position will be zero.

Comments:

Because Notlnstr has been designed as a function, it must be
declared before it may be used.

Notlnstr is not strictly the inverse of BASIC's INSTR function.
Where INSTR compares entire strings, Notinstr uses a table of
single characters. The first position in the searched string that
doesn't match any of them is then returned by the function. You
can tell Notlnstr to begin at any character in the searched string, or
use a Start value of 1 to consider the entire string.

The following example displays 2, because the second character in
Source$ does not match any of the characters in Table$.

Source$= "QUICKPAK"
Table$= "QKP"
PRINT Notlnstr%(1, Source$, Table$) 'prints 2

You can see Notlnstr in use by examining the DIRTREE.BAS
program.

Also see the descriptions for the Qlnstr? and InstrTbl? series of
INSTR variations.

Crescent Software, Inc. 8-21

I

I

Chapter8 QuickPak Professional

Null
assembler function contained in PRO.LIB

Purpose:

Null will report if the specified string is either null, or is filled only
with blank or CHR$(0) characters.

Syntax:

Empty= Null%(Work$)

Where:

Empty is assigned -1 (true) if the string is effectively null,
or O (false) if it is not.

Comments:

Because Null has been designed as a function, it must be declared
before it may be used.

Null was developed to overcome the clumsy code that is otherwise
needed to determine if a string contains useful characters. The usual
way to do this would be either:

or

IF Work$="" OR Work$= SPACE$(LEN(Work$))
THEN... 'It's null

IF LTRIM$(RTRIM$(Work$)) = ""
THEN ... 'Also null

Besides being considerably faster, Null considers a CHR$(0) byte
the same as a CHR$(32) space. It is important to recognize
CHR$(0) because that is what QuickBASIC uses to initialize
fixed-length strings.

8-22 Crescent Software, Inc.

QuickPak Professional Chapter8

ParseString
assembler function contained in PRO.LIB

Purpose:

ParseString accepts a string containing delimited information, and
returns portions of that string each time it is invoked.

Syntax:

Item$= ParseString${CurPos%, Work$, Delimit$)

Where:

CurPos % tells where in the string to begin processing, Work$ is the
string being read, and Delimit$ is a table of one or more delimiting
characters. Item$ then receives the next delimited component from
Work$.

Comments:

Because ParseString has been designed as a function, it must be
declared before it may be used.

This is an enhanced version of PDQParse that we include with our
P. D. Q. I ibrary. Each time ParseString is invoked it returns the
next portion of the string, much like READ returns the next
available DAT A item in a list. The example below shows how
ParseString is set up and used.

CurPos% = 1
Delimit$=";/-,"
Work$= ENVIRON$("PATH")
DO

'start reading at the beginning
'any of these characters will delimit
'for example: "C:\DOS;C:\UTIL;C:QB4"
'read and print each PATH item

Thisltem$ = ParseString$(CurPos%, Work$, Delimit$)
PRINT Thisltem$

LOOP WHILE LEN(Thisltem$) 'until there are no more

The CurPos% (current position) parameter lets you indicate where
to begin reading, and would usually be set to 1 initially. If
CurPos % is less than 1 (0 or negative) it is forced to 1. If
CurPos % points past the end of the string, then ParseString will
return a null (zero-length) string.

Crescent Software, Inc. 8-23

I

I

Chapter8 QuickPak Professional

Each time ParseString is used, it advances CurPos % automatically
to point just past the last delimiter. You can change CurPos%
manually to move around in one string, and also use ParseString
with more than one string at a time. To work with multiple strings
you must maintain a separate version of the CurPos % variable for
each string being read.

If any of the delimiters in Delimit$ are encountered, ParseString
returns the portion of the string that precedes the delimiter. Note
that only ten characters are allowed for Delimit$. If Delimit$ is
longer than ten, only the first ten characters are used.

The PARSESTR.BAS demonstration program shows an example of
using ParseString.

8-24 Crescent Software, Inc.

QuickPak Professional Chapter 8

ProperName
assembler subroutine contained in PRO.LIB

Purpose:

ProperName converts the first letter of each word in a string to
upper case.

Syntax:

CALL ProperName(Work$)

Where:

Work$ is typically a name such as "john doe, jr. ", and Proper Name
converts it to "John Doe, Jr.".

Comments:

ProperName is useful for automatically enforcing the correct
capitalization on name fields in a database program. We considered
writing ProperName to also convert the remaining characters to
lower case, but that could have introduced undesirable side effects.
For example, if the incoming name was "MacDonald", the first
"D" would no longer be correct. Even though the routine could be
written to search for all occurrences of "Mc" and "Mac", it would
still fail on names such as "De Vito" or "O'Malley".

Crescent Software, Inc. 8-25

I

I

Chapter 8 QuickPak Professional

Qlnstr and Qinstr2
assembler functions contained in PRO.LIB

Purpose:

Qlnstr serves the same purpose as BASIC's INSTR function, except
it accepts any number of"?" wild cards. Qlnstr2 is similar, but it
ignores capitalization when examining the strings.

Syntax:
Position= Qlnstr%(StartPos%, Source$, Search$)

Where:

StartPos % tells Qlnstr where in the string to start looking, and
Source$ is the string being examined. Search$ is the string whose
position in Source$ is being sought, and Position% receives where
in Source$ the first occurrence of Search$ is located.

Comments:

Because Qlnstr and Qlnstr2 have been designed as functions, they
must be declared before they may be used.

Unlike BASIC's INSTR where the starting position is an optional
parameter, it must be given when using Qlnstr and Qlnstr2. An
assembler routine simply cannot be called with a different number
of parameters than it expects.

To search a string starting at the beginning, set StartPos % to 1.
Using O will always return O for Position, which is what BASIC's
INSTR does.

In QuickPak Professional 1.XX versions Qlnstr2 was named Qlnstr,
and there was no case insensitive version.

Also see the description for Notlnstr and the InstrTbl? series of
INSTR variations.

8-26 Crescent Software, Inc.

QuickPak Professional Chapter8

QlnstrB and QinstrB2
assembler functions contained in PRO.LIB

Purpose:

QlnstrB is similar to the QuickPak Professional Qlnstr function,
except it scans the source string backwards looking for a specified
substring. QlnstrB2 is an alternate version that ignores
capitalization in both strings. Like Qlnstr and Qlnstr2, these
functions accept any number of "?" wild cards to match any
character.

Syntax:
Position= QlnstrB%(StartPos%, Source$, Search$)

Where:

StartPos % tells QinstrB where in the string to start looking, and
Source$ is the string being examined. Search$ is the string whose
position in Source$ is being sought, and Position% receives where
in Source$ the last occurrence of Search$ is located. If no matches
are found, Position will be zero. If StartPos % is set to -1, then the
entire string is examined starting at the last character.

Comments:

Because QlnstrB and QlnstrB2 have been designed as functions,
they must be declared before they may be used.

QlnstrB and QlnstrB2 are useful in a variety of situations. For
example, to isolate the path portion of a complete file name you
would need to know where in the string the last backslash (\) is
located.

Unlike BASIC's INSTR where the starting position is an optional
parameter, it must be given when using QlnstrB and QlnstrB2. An
assembler routine cannot be called with a different number of
parameters than it expects. Even though searching is performed
backwards, the returned position indicates where in the source
string the search string begins.

Also see the description for Notlnstr and the lnstrTbl? series of
INSTR variations.

Crescent Software, Inc. 8-27

I

I

Chapter 8 QuickPak Professional

QinstrH
assembler subroutine contained in PRO.LIB

Purpose:

QlnstrH is a "Huge" INSTR routine that will locate a string of text
anywhere in the PC's normal 1MB address space.

Syntax:
CALL QlnstrH(Segment%, Address%, Search$, NumBytes&)

Where:

Segment% and Address% identify where in memory you want to
begin searching, Search$ is the string to locate, and NumBytes&
specifies how many bytes are to be searched. If the string is found,
Segment% and Address% show where it is in memory. If it is not
found, then Segment% and Address% are both returned set to a
value of zero.

Comments:

Please note that our method of returning zeros for the segment and
address can fail if you are searching starting at the very bottom of
memory and a match is found at the very first byte. However, it is
very unlikely that you'll need to search the interrupt vector table
using QlnstrH.

QlnstrH is demonstrated in QINSTRH.BAS.

8-28 Crescent Software, Inc.

QuickPak Professional Chapter8

QPLeft, QPMid, and QPRight
assembler functions contained in PRO.LIB

Purpose:

QPLeft serves the same purpose as BASIC's LEFT$O function, but
it is faster in some situations. Similarly, QPMid and QPRight
replace BASIC's MID$O and RIGHT$O functions respectively.

Syntax:

Substring$= QPLeft$(Work$, NumChars%)

or

Substring$= QPMid$(Work$, StartChar%, NumChars%)

or

Substring$= QPRight$(Work$, NumChars%)

Where:

SubString$ receives NumChars% characters from Work$.
StartChar% is relevant for QPMid$ only, and indicates how far into
the string to begin extracting characters.

Unlike BASIC's M1D$O function, the NumChars % argument is not
optional with QPMid. However, QPMid recognizes a value of -1
for NumChars % to mean that all characters through the end of the
string should be considered.

Comments:

Because these routines have been designed as functions, they must
be declared before they may be used.

These functions are provided as fast replacements for the built-in
equivalent functions in QuickBASIC. In many situations they will
be faster than QuickBASIC, however they are always slower when
used with BASIC PDS far strings due to the additional overhead
required to access far data.

Crescent Software, Inc. 8-29

I

I

Chapter8 QuickPak Professional

QPLen
assembler function contained in PRO.LIB

Purpose:

QPLen serves the same purpose as BASIC's LEN function, but it is
considerably faster.

Syntax:

Length= QPLen%(Work$)

Where:

Length is assigned to the length of Work$.

Comments:

Because QPLen has been designed as a function, it must be declared
before it may be used.

Because of the way BASIC's system of library calls is organized,
even the simple act of obtaining the length of a string involves a lot
of unnecessary code. The entire assembler source code for QPLen
is shown below to illustrate how simple this function really is.

QPLen Proc Far
Mov SI,SP
Mov BX, [SI +04]
Mov AX, [BX]

Ret 2
QPLen Endp

;put the stack pointer into SI
;get the address for X$ descriptor
;put LEN(X$) into AX for the
;function output
;return to BASIC

QPLen will always be faster than BASIC's LEN, however it is
slower when using BASIC PDS far strings due to the additional
overhead of accessing far data. Also, QPLen will be slower with
either compiler when used with string expressions such as
QPLen%(A$ + B$). QPLEN is not appropriate for determining
the length of a TYPE variable.

8-30 Crescent Software, Inc.

QuickPak Professional Chapter8

QPSadd
assembler function contained in PRO.LIB

Purpose:

QPSadd serves the same purpose as BASIC's SADD function, but it
is considerably faster and more compact.

Syntax:

Address= QPSadd%(Work$)

Where:

Work$ is any conventional (not fixed-length) string, and Address
receives the starting address of its characters in near memory.

Comments:

Because QPSadd has been designed as a function, it must be
declared before it may be used.

Also see the related functions QPLen, ASCII, and GetDS.

QPSadd will always be faster than BASIC's SADD, however it is
slower when using BASIC PDS far strings due to the additional
overhead of accessing far data. Also, QPSadd will be slower with
either compiler when used with string expressions such as
QPSadd%(A$ + B$).

Crescent Software, Inc. 8-31

I

Chapter8 QuickPak Professional

QPStrl and QPStrL
assembler functions contained in PRO.LIB

Purpose:

QPStrl and QPStrL serve the same purpose as BASIC's STR$O
function, but they are considerably faster. QPStrl is intended for
use with integer variables, and QPStrL is meant for long integers.

Syntax:

X$ = QPStrl$(IntVar%)

or

X$ = QPStrL$(Longlnt&)

Where:

IntVar% and Longlnt& are the numeric variables being converted to
string form.

Comments:

Because QPStrl and QPStrL have been designed as functions, they
must be declared before they may be used.

Either of these routines will be much faster than the equivalent
QuickBASIC functions because each has been optimized to work
with only one type of variable. QuickBASIC's STR$() function
must be able to convert any numeric variable type, which of course
adds to the complexity of that routine.

Unlike BASIC's STR$ function, QPStrl and QPStrL do not add the
annoying leading blank on positive values.

Also see the related functions QPVall and QPValL which replace
QuickBASIC's VAL() function for integers and long integers
respectively.

8-32 Crescent Software, Inc.

QuickPak Professional Chapter 8

QPTrim, QPLTrim, and QPRTrim
assembler functions contained in PRO.LIB

Purpose:

QPLTrim and QPRTrim serve the same purpose as BASIC's
LTRIM$0 and RTRIM$0 functions, but they are faster in most
situations. QPTrim trims both leading and trailing blanks in one
operation. All three of these routines remove CHR$(0) characters as
well as normal CHR$(32) blanks.

Syntax:

Substring$= QPTrim$(Work$)

or

Substring$= QPLTrim$(Work$)

or

Substring$= QPRTrim$(Work$)

Where:

SubString$ receives the trimmed version of Work$.

Comments:

Because these routines have been designed as functions, they must
be declared before they may be used.

These functions are provided as fast replacements for the built-in
equivalent functions in QuickBASIC. In many situations they will
be faster than QuickBASIC, however the exact difference depends
on how they are being used. When both leading and trailing blanks
must be removed, QPTrim will be much faster in all situations.

Recognizing CHR$(0) is particularly important in QuickBASIC 4 if
fixed-length strings are being used. When QuickBASIC initializes a
fixed-length string, it is filled with zero bytes rather than CHR$(32)
blanks.

Crescent Software, Inc. 8-33

I

Chapter8 QuickPak Professional

QPVall and QPValL
assembler functions contained in PRO.LIB

Purpose:

QPValI and QPValL serve the same purpose as BASIC's VALO
function, but they are considerably faster. QPValI is intended for
use with strings whose values range from -32768 to 32767, and
QPValL is meant for use with values that fall within the range
accommodated by long integers.

Syntax:

X = QPValI%("12345")

or

X = QPValL&("l23456789")

Where:

X receives the value of the specified strings. Of course, you would
probably use a string variable rather than a quoted constant, and the
examples are shown this way merely for clarity.

Comments:

Because QPValI and QPValL have been designed as functions, they
must be declared before they may be used.

Either of these routines will be much faster than the equivalent
QuickBASIC functions because each has been optimized to work
with only one type of variable. QuickBASIC's VALO function must
be able to process a wide range of values, which of course adds to
the complexity of that routine.

Also see the related functions QPStrl and QPStrL which replace
QuickBASIC's STR$0 function for integers and long integers
respectively.

8-34 Crescent Software, Inc.

QuickPak Professional Chapter8

RemCtrl
assembler subroutine contained in PRO.LIB

Purpose:

RemCtrl quickly scans through a given string, and replaces any
control characters with a specified new character.

Syntax:

CALL RemCtrl(X$, Replace$)

Where:

X$ is the string to be processed, and the first character in Replace$
is used as a replacement. The replacement may also be specified to
be a blank space by using a null string for Replace$.

Comments:

Embedded control characters have long been a problem for
programmers, because so many text files contain them, and so many
printers can't handle them. A control character is any character that
has an ASCII value less than 32.

Control characters are often used in communications programs to
tell the modem at the other end when to start or stop transmission.
Also, many word processors use various control characters to
indicate margin settings and other formatting information.

RemCtrl provides a clean way to remove those characters from a
string that will be printed, or displayed on the screen. Remember,
BASIC also interprets certain control characters, for example, a
CHR$(29) backs up the cursor one column, and a CHR$(12) clears
the screen.

Even though RemCtrl merely substitutes a new character and
doesn't truly remove the control characters, that would be easy to
do as well. Simply specify an unlikely replacement such as
CHR$(0) or CHR$(255), and then use the ReplaceString function to
replace that with a null string.

Also see the related routines Low ASCII and Translate.

Crescent Software, Inc. 8-35

I

I

Chapter8 QuickPak Professional

ReplaceChar and ReplaceChar2
assembler subroutines in PRO.LIB

Purpose:

ReplaceChar replaces all occurrences of a specified character in a
string with a different character. ReplaceChar2 is similar, but when
searching it ignores capitalization.

Syntax:
CALL ReplaceChar(Source$, Old$, New$)

Where:

Source$ is the string in which the characters are being replaced,
Old$ is the character to replace, and New$ is what it is to be
replaced with.

Comments:

These routines are intended to replace single characters only. They
will of course replace more than one occurrence of the character
automatically, but only the first letter in Old$ and New$ is
examined.

Also see the ReplaceString function contained in REPLACE.BAS
which will replace all occurrences of a string of any size with a
different string also of any size.

8-36 Crescent Software, Inc.

QuickPak Professional Chapter 8

ReplaceCharT and ReplaceCharT2
assembler subroutines contained in PRO. LIB

Purpose:

ReplaceCharT and ReplaceCharT2 are alternate versions of
ReplaceChar and ReplaceChar2 that replace all occurrences of one
character in a string with another. Where ReplaceChar and
ReplaceChar2 are meant for use with conventional strings, these
new versions are meant for use with TYPE variables, fixed-length
strings, or indeed, any arbitrary block of memory up to 64K
(65,535 bytes) long.

Syntax:

CALL ReplaceCharT[2](SEG TypeVar AS ANY, BYVAL TypeLength%, _
BYVAL OldChar%, BYVAL NewChar%)

Where:

Type Var is either a single TYPE variable, fixed-length string, or an
array element. TypeLength % is the number of bytes to process,
and OldChar% and NewChar% are the ASCII values of the
character to replace and the new replacement respectively. That is,
to replace all CHR$(0) bytes with CHR$(32) spaces you would use
0 for OldChar% and 32 for NewChar%.

Comments:

We needed these routines for an in-house project that read someone
else's database into a TYPE variable, and all of the trailing
characters in each field were filled with CHR$(0) zero bytes instead
of CHR$(32) spaces which we needed to remove with RTRIM$.

Note that TypeLength% can be specified as LEN(TypeVar), which
eliminates having to change the length value if you later make
changes to Type Var.

Crescent Software, Inc. 8-37

I

I

Chapter 8 QuickPak Professional

ReplaceCharT searches for an exact match on CHR$(0ldChar%),
and replaces each occurrence with CHR$(NewChar%).
ReplaceCharT2 ignores capitalization both when searching and
replacing, using upper-case versions. If you will be replacing zero
bytes or other control characters, using ReplaceCharT is slightly
faster and smaller than ReplaceCharT2 because it avoids the extra
testing for capitalization.

As with all of the other QuickPak Professional routines that accept a
SEG argument, you can also replace the single SEG parameter with
an arbitrary segment and address by passing both as integers using
BYVAL:

DECLARE SUB ReplaceCharT(BYVAL Segment%, BYVAL Address%,_
BYVAL NumBytes%, BYVAL Old%, BYVAL New%)

You can also process multiple elements in an array at once by
faking the length parameter. For example, if you have a 100
element array and each element is, say, 200 bytes long, you can use
20000 for the length. If the length is larger than 32767 (but less
than 65536) you must use an equivalent negative value or a long
integer.

If you plan to use these routines with fixed-length strings, please
see the section "Calling with segments" in the manual.

8-38 Crescent Software, Inc.

QuickPak Professional Chapter 8

ReplaceString
BASIC subprogram contained in REPLACE.BAS

Purpose:

ReplaceString replaces all occurrences of a specified string with a
different string. Both the string being searched for and its
replacement may be any length.

Syntax:
CALL ReplaceString(Source$, Old$, New$)

Where:

Source$ is the string in which the substring is being replaced, Old$
is the string to be replaced, and New$ is what it is to be replaced
with.

Comments:

This routine is written in BASIC because an assembler routine
cannot change the length of a BASIC string. That would of course
be necessary, unless both Old$ and New$ were the exact same
length.

As with the QuickPak Professional functions, ReplaceString is
intended to be added to your programs by copying it from the
REPLACE.BAS file.

Also see the ReplaceChar and ReplaceChar2 routines which will
replace single characters in a string at assembler speed.

Crescent Software, Inc. 8-39

I

I

Chapter8 QuickPak Professional

ReplaceTbl
assembler subroutine contained in PRO.LIB

Purpose:

ReplaceTbl lets you easily replace all occurrences of one character
with any other character using a lookup table.

Syntax:

CALL ReplaceTbl(Work$, Table$)

Where:

Work$ is the string to be examined, and Table$ is a table of
character pairs (see below).

Comments:

ReplaceTbl is modeled after UpperTbl except it does not modify
any characters that are not found in the table (UpperTbl also
capitalized the string).

Table$ is set up using pairs of characters--the first character is the
one to replace and the second is the replacement. The third is the
next character to replace, and so forth. The following example
replaces the digits "1" through "5" with the letters "A" through
"E".

Work$= "Testing 1,2,3,4,5"
CALL ReplaceTbl(Work$, "1A2B3C405E")
PRINT Work$ 'displays "Testing A,B,C,D,E"

8-40 Crescent Software, Inc.

QuickPak Professional Chapter8

Sequence
assembler subroutine contained in PRO.LIB

Purpose:

Sequence will increment the characters in a string.

Syntax:
CALL Sequence(Work$)

Where:

Work$ is the string to be sequenced.

Comments:

It is common in database applications to utilize sequenced fields,
perhaps to assign account or part numbers automatically. For
example, if the last customer account number on record is, say,
"AAA-0134-52", Sequence will increment it to be
"AAA-0134-53". Likewise, if the string were "009-AABD-99",
Sequence would change it to "009-AABE-OO".

Sequence will increment the characters in any of the following three
categories - digits, upper case letters, and lower case letters.
Imbedded delimiters are unaffected, and "wrapping" will extend
across any blanks or non-numeric/ alphabetic characters.

Sequence requires that the string be initially "seeded" with a
starting value such as "0000000001". When all available digit
positions have been exhausted, Sequence will wrap around without
indicating an overflow. That is, "999" will be sequenced to "000".
It is therefore up to you to ensure that a sufficient number of
character positions be initially set aside.

Sequence is demonstrated in context in the SEQUENCE.BAS
example program.

Crescent Software, Inc. 8-41

I

I

Chapter8 QuickPak Professional

SpellNumber
BASIC function contained in SPELLNUM.BAS

Purpose:

SpellNumber accepts a number in the form of a string such as
"12345", and returns a spelled-out English equivalent in the form of
"Twelve Thousand Three Hundred Forty Five".

Syntax:
English$= Spel1Number$(STR$(Number))

Where:

Number may be any type of variable or value (integer, single
precision, and so forth), and English$ receives the spelled-out
equivalent.

Comments:

SpellNumber processes the whole number portion of the value only.
Because you may want to print or display the spelled-out answer as
values or as dollar amounts, we have instead shown how to deal
with the fractional portion in the demonstration included in
SPELLNUM.BAS.

Comments in the demonstration show which lines to remove when
loading SPELLNUM.BAS as a module in your own programs.

8-42 Crescent Software, Inc.

QuickPak Professional Chapter8

Translate
assembler subroutine contained in PRO.LIB

Purpose:

Translate will replace any occurrence of an extended "box drawing"
character with an appropriate equivalent normal ASCII character.

Syntax:

CALL Translate(X$)

Where:

X$ is the string to be processed.

Comments:

The IBM standard extended character set is useful for drawing
boxes and rule lines on the display screen; however, many printers
simply cannot print them. Also, early CGA adapters don't contain
the font definitions for characters beyond 127.

Translate quickly searches through a specified string, and replaces
the characters commonly used for lines and corners with an
appropriate equivalent. For example, the CHR$(196) horizonta(line
is replaced with a hyphen(-), and a corner is replaced with a plus
sign (+).

Any character that couldn't possible be considered a "box"
character is replaced with a plus sign.

Crescent Software, Inc. 8-43

I

I

Chapter 8 QuickPak Professional

Upper
assembler subroutine contained in PRO.LIB

Purpose:

Upper will quickly convert all of the alphabetic characters in a
specified string to upper case.

Syntax:

CALL Upper(X$)

Where:

X$ is the string to be processed.

Comments:

Even though QuickBASIC 4 provides a built-in UCASE$0 function,
Upper is provided because it is considerably faster. One of the
problems with UCASE$ (and LCASE$) is that they must be used as
a function. That is, in order to convert a string it must be reassigned
which takes time:

X$ = UCASE$(X$)

Upper instead scans through the named string very quickly,
converting only the lower case alphabetic characters.

Also see the related routine Lower.

8-44 Crescent Software, Inc.

QuickPak Professional Chapter8

UpperTbl
assembler subroutine contained in PRO.LIB

Purpose:

UpperTbl will capitalize all of the characters in a string, and it also
looks in a supplied table to determine how to handle foreign
characters.

Syntax:

CALL UpperTbl(Work$, Table$)

Where:

Work$ is the string to be capitalized, and Table$ holds one or more
pairs of lower and upper case extended characters.

Comments:

UpperTbl was written to accommodate our European friends,
although it could also be used as a general purpose table-driven
character substitution routine. The table string comprises pairs of
characters, with the first in each pair being the lower case version,
and the second its upper case counterpart. Even though we could
have hard-coded the conversions into the routine, it would need to
be changed for different languages. For example, the character
conversions that are used for German are not necessarily the same
as those for other languages. A typical table would be assigned like
this:

Table$= "aiiociUOiiN"

Notice that normal characters are converted to upper case regardless
of the table, and Table$ is needed solely to accommodate the
additional characters.

Also see the related routine LowerTbl, which converts a string to
lower case.

Crescent Software, Inc. 8-45

I

I

Chapter9
Video Routines

QuickPak Professional Chapter 9

APrint
assembler subroutine contained in PRO.LIB

Purpose:

APrint will quickly print any portion of a conventional (not
fixed-length) string array, and contain the display within a specified
area of the screen.

Syntax:

CALL APrint(BYVAL VARPTR(Array$(First)), NumEls%, FirstChar%,
NumChars%, Colr%, Page%)

Where:

Array$(First) is the first element to be included, and NumEls % is
the total number of elements to print.

FirstChar% is the first character in each string to be displayed, and
NumChars % is the number of characters to print.

Colr% specifies the display color, coded in the format used by
QuickPak Professional. If -1 is used for Colr%, the current screen
colors will be maintained.

Page% indicates the video page to write to, which is relevant only
when a color monitor is installed. If Page% is set to -1, APrint will
use the current page.

Printing always begins at the current cursor location.

Comments:

Using APrint to display part of an array is similar to using MID$ to
print part of a string. Besides specifying which character to begin
printing with and how many, you also give APrint a starting
element and number of elements.

Crescent Software, Inc. 9-1

I

I

Chapter 9 QuickPak Professional

9-2

This approach greatly simplifies construction of a "Browse"
facility, as shown in the APRINT .BAS demonstration program.
Before APrint, the only reasonable way to browse an entire array
was to print the first screen, and then use a scroll routine to move it
around. But the scrolling approach is extremely cumbersome at best.

If the operator presses the up arrow, you must first scroll the screen
down a line, and then display the previous element at the top of the
screen. And if the new top line is not as long as what had been
there before it, any remnants from the earlier string would have to
be cleared.

The problem gets even worse when the array must be moved left or
right. Not only do you have to scroll the screen, but you must also
write new characters down the left or right edge of the screen from
each element.

APrint provides a far superior method, by letting you specify the
element and character to be positioned in the upper left corner.
Then to display another portion of the array, simply give APrint the
new starting values and do it again.

Where other methods require you to think in terms of "virtual
screens" or work with multiple arrays, APrint instead creates a
window into the array, letting you easily view any portion.

Besides the ability to quickly display all or part of a string array,
APrint also accommodates any text screen mode automatically. All
of the internal calculations it performs to determine screen memory
addresses are adjusted to work in either 40 or 80 columns, and 25,
43, or 50 lines.

Crescent Software, Inc.

QuickPak Professional Chapter 9

The example below shows how simple it is to create a complete
browse routine in QuickBASIC 4, not counting the additional code
needed to open and read the file.

DEFINT A-Z
FirstEl = 1
FirstChar = 1
DO

'start at first element
'and first character

LOOP

LOCATE 1, 1
CALL APrint(BYVAL VARPTR(Array$(FirstEl)), 25,

FirstChar, 80, 7, -1)

DO
X$ = INKEY$
IF X$ = CHR$(27) THEN END

LOOP UNTIL LEN(X$) = 2

SELECT CASE ASC(RIGHT$(X$, 1))
CASE 80

FirstEl = FirstEl + 1

'get a key
'end if Escape
'wait for extended key

'down arrow

CASE 72 'up arrow
IF FirstEl > 1 THEN FirstEl = FirstEl - 1

CASE 75 'left arrow
IF FirstChar > 1 THEN FirstChar = FirstChar - 1

CASE 77
FirstChar = FirstChar + 1

CASE ELSE
END SELECT

'right arrow

See the COLORS .BAS description for more information about
combining foreground and background colors to a single byte. Also
see the related routines APrint0, APrintT, and APrintT0.

Crescent Software, Inc. 9-3

I

I

Chapter 9 QuickPak Professional

APrint0
assembler subroutine contained in PRO.LIB

Purpose:

APrint0 will quickly print any portion of a conventional (not
fixed-length) string array, and contain the display within a specified
area of the screen.

Syntax:

CALL APrintO(BYVAL VARPTR(Array$(First)), NumEls%, FirstChar%,
NumChars%, Colr%)

Where:

Array$(First) is the first element to be included, and NumEls % is
the total number of elements to print.

FirstChar% is the first character in each string to be displayed, and
NumChars % is the number of characters to print.

Colr% specifies the display color, coded in the format used by
QuickPak Professional. If -1 is used for Colr % , the current screen
colors will be maintained.

Printing always begins at the current cursor location.

Comments:

9-4

APrint0 is nearly identical to APrint, except it prints on text page
zero only. Because many programs do not need the ability to print
on multiple pages, the additional code to accommodate that feature
has been omitted. However, APrint0 recognizes all of the text
modes automatically.

A description of how array printing is useful in a program is given
in the discussion that accompanies the APrint routine.

Also see the related routines APrint, APrintT, APrintT0 and
COLORS.BAS.

Crescent Software, Inc.

QuickPak Professional Chapter 9

APrintT
assembler subroutine contained in PRO.LIB

Purpose:

APrintT will quickly print any portion of a fixed-length string array
or the string component of a TYPE array, and contain the display
within a specified area of the screen.

Syntax:

CALL APrintT(BYVAL VARSEG(Array$(First)),
BYVAL VARPTR(Array$(First)), ElSize%,-NumE1s%,
FirstChar%, NumChars%, Colr%, Page%)

Where:

Array$(First) is the first element to be included, and E1Size% is the
total length in bytes of each element.

NumEls % is the total number of elements to print, FirstChar % is
the first character in each string to be displayed, and NumChars %
is the number of characters to print.

Colr% specifies the display color, coded in the format used by
QuickPak Professional. If -1 is used for Colr%, the current screen
colors will be maintained.

Page% indicates the video page to write to, which is relevant only
when a color monitor is installed. If Page% is set to -1, APrintT
will use the current page.

Printing always begins at the current cursor location.

Comments:

APrintT is nearly identical to APrint, except it is intended for use
with fixed-length string arrays.

Comments in the APRINTT .BAS demonstration program show how
to call APrintT without requiring all of the
BYV AL/V ARSEG/V ARPTR nonsense. That topic is also discussed
in depth in the appendix under the heading "Calling With
Segments".

Crescent Software, Inc. 9-5

Chapter 9 QuickPak Professional

9-6

A description of how array printing is useful in a program is given
in the discussion that accompanies the APrint routine.

See the COLORS .BAS description for more information about
combining foreground and background colors to a single byte. Also
see the related routines APrint, APrint0, and APrintT0.

Crescent Software, Inc.

QuickPak Professional Chapter 9

APrintT0
assembler subroutine contained in PRO.LIB

Purpose:

APrintT0 will quickly print any portion of a fixed-length string
array or the string component of a TYPE array, and contain the
display within a specified area of the screen.

Syntax:

CALL APrintTO(BYVAL VARSEG(Array$(First)),
BYVAL VARPTR(Array$(First)), E1Size%, NumEls%, _
FirstChar%, NumChars%, Colr%)

Where:

Array$(First) is the first element to be included, and E1Size% is the
total length in bytes of each element.

NumEls % is the total number of elements to print, FirstChar % is
the first character in each string to be displayed, and NumChars %
is the number of characters to print.

Colr % specifies the display color, coded in the format used by
QuickPak Professional. If -1 is used for Colr%, the current screen
colors will be maintained.

Printing always begins at the current cursor location.

Comments:

APrintT0 is nearly identical to APrintT, except it prints on text
page zero only. Because many programs do not need the ability to
print on multiple pages, the additional code to accommodate that
feature has been omitted. However, APrintT0 recognizes all of the
text modes automatically.

A description of how array printing is useful in a program is given
in the discussion that accompanies the APrint routine.

AprintT0 may also be called without requiring BYV AL V ARSEG
and BYV AL V ARPTR, as explained in the tutorial entitled "Calling
With Segments".

Crescent Software, Inc. 9-7

I

Chapter 9 QuickPak Professional

9-8

See the COLORS.BAS description for more information about
combining foreground and background colors to a single byte. Also
see the related routines APrint, APrint0, and APrintT.

Crescent Software, Inc.

QuickPak Professional Chapter 9

ArraySize
assembler function contained in PRO.LIB

Purpose:

ArraySize will quickly calculate how many elements are needed in
an integer array that is intended to hold a portion of the display
screen.

Syntax:

Size= ArraySize%(ULRow%, ULCol%, LRRow%, LRCol%)

Where:

ULRow%, ULCol%, LRRow%, and LRCol% describe the area of
the screen to be saved, and Size receives the number of elements
that are needed.

Comments:

Because ArraySize has been designed as a function, it must be
declared before it may be used.

ArraySize is meant to be used in conjunction with ScrnSave and
ScrnRest. Those routines have been designed to store a screen in an
integer array, thus allowing you to save as many screens or parts of
a screen as necessary. However, the size to which the arrays must
be dimensioned depends on how large a portion of the screen is
being saved.

ArraySize accepts the window boundaries, and then returns the
number of elements needed to hold it. The calculations add one
extra element to accommodate the use of OPTION BASE 1 in your
programs.

The example below shows the minimum steps necessary to save the
portion of the screen from 1, 1 to 10,80.

DIM ScrnArray%(ArraySize%(1, 1, 10, 80))
CALL ScrnSave(l, 1, 10, 80, SEG ScrnArray%(0), -1)

Crescent Software, Inc. 9-9

I

Chapter 9 QuickPak Professional

Of course, you could also calculate the array size manually. This
would make sense if the size of the screen being saved is always the
same. For example, an entire screen (with 80 columns by 25 rows)
requires 2000 elements.

The equivalent formula is:

ArraySize% = (LRRow - ULRow + 1) * (LRCol - ULCol + 1)

9-10 Crescent Software, Inc.

QuickPak Professional Chapter 9

BlinkOff and BlinkOn
assembler subroutines contained in PRO.LIB

Purpose:

BlinkOff and BlinkOn let you exchange foreground color flashing
for a high-intensity background color on EGA and VGA monitors.

Syntax:

CALL BlinkOff
CALL BlinkOn

Where:

Calling BlinkOff disables foreground color flashing, and calling
BlinkOn re-enables flashing.

Comments:

Once BlinkOff has been called, specifying a foreground color
greater than 16 will instead set the background color to high
intensity. Calling BlinkOn resets the default flashing mode.

These routines are intended for use with EGA and VGA monitors
only, and they work by setting the EGA/VGA palette register.

Normal monochrome and CGA monitors can also be set to exhange
flashing for a high-intensity background by using OUT statements.
To switch a monochrome display to use a high-intensity background
use OUT &H3B8, 9 and to restore flashing use OUT &H3B8, 29.
To switch a CGA display to use a high-intensity background use

OUT &H3D8, 9 and to restore flashing use OUT &H3D8, 29.

Be warned that using these OUT statements with incorrect values
has the potential to damage the monitor.

Crescent Software, Inc. 9-11

I

Chapter 9 QuickPak Professional

Box
assembler subroutine contained in PRO.LIB

Purpose:

Box will quickly draw a box frame on the screen.

Syntax:

CALL Box(ULRow%, ULCol%, LRRow%, LRCol%, Char%,
Colr%, Page%)

Where:

ULRow%, ULCol%, LRRow%, and LRCol% describe the box
boundaries, and Char% indicates the box style (see the table below).

Colr% is the desired box color, coded in the format used by
QuickPak Professional. If -1 is used for Colr%, the current screen
colors will be maintained.

Page% tells Box which screen page to use, but that is relevant only
with a color monitor. If Page% is -1 then the currently active page
will be used.

Comments:

Box uses a simple code to indicate the style of box to be drawn. The
table below shows what values to use for Char% to indicate the type
of box.

1 = single line all around
2 = double line all around
3 = double line horizontally, single line vertically
4 = single line horizontally, double line vertically

If Char% is assigned to any other value, that ASCII character will
be used for the entire box.

Also see the related routine Box0 that writes to page zero only. Box
is demonstrated in the DEMOCM.BAS example program.

9-12 Crescent Software, Inc.

QuickPak Professional Chapter 9

Box0
assembler subroutine contained in PRO.LIB

Purpose:

Box0 will quickly draw a box frame on the screen.

Syntax:

CALL BoxO(ULRow%, ULCol%, LRRow%, LRCol%, Char%, Colr%)

Where:

ULRow%, ULCol%, LRRow%, and LRCol% describe the box
boundaries, and Char% indicates the box style (see the description
for the Box routine).

Colr% is the desired box color, coded in the format used by
QuickPak Professional. If -1 is used for Colr%, the current screen
colors will be maintained.

Comments:

Box0 is nearly identical to Box, except it draws on text page zero
only. Because many programs do not need the ability to use
multiple screen pages, the additional code to accommodate that
feature has been omitted.

See the description for the Box routine for details on specifying the
box drawing characters.

Crescent Software, Inc. 9-13

I

Chapter 9 QuickPak Professional

BPrint
assembler subroutine contained in PRO.LIB

Purpose:

BPrint will print either a conventional or fixed-length string at the
current cursor position through DOS.

Syntax:
CALL BPrint(X$)

Where:

X$ is the string to be printed.

Comments:

BPrint is provided with QuickPak Professional as a way to
communicate with a PC's BIOS directly. Because QuickBASIC 4
writes directly to screen memory, it is not possible to do this in
BASIC.

BPrint will be necessary only if you need to send a special code to
the video BIOS, for example to activate a terminate and stay
resident utility. With many screen builder programs, the only way
you can tell them to display a screen is by sending a special
command string through the PC's BIOS.

BPrint is also useful if you intend to send screen codes to
ANSI.SYS from within a BASIC program.

Even though BPrint is intended to print only strings, you can easily
print numbers using the BASIC STR$ function:

CALL BPrint(STR$(Number))

9-14 Crescent Software, Inc.

QuickPak Professional Chapter 9

ClearEOL
assembler subroutine contained in PRO.LIB

Purpose:

ClearEOL (Clear to End of Line) erases the current screen line
starting at the current cursor position.

Syntax:

CALL ClearEOL(Colr%)

Where:

Colr% specifies the display color, coded in the format used by
QuickPak Professional. If -1 is used for Colr%, the current screen
colors will be maintained.

Comments:

ClearEOL always operates on whatever screen page is currently
active.

When using ClearEOL, understand that the line is cleared by
printing a string of blank spaces. Therefore, to clear to a particular
color, it is the background color that you will be specifying.

The color will be given as a single byte in the format used by
QuickPak Professional. See the COLORS.BAS description for more
information about combining foreground and background colors to a
single byte.

Crescent Software, Inc. 9-15

I

I

Chapter 9 QuickPak Professional

ClearScr
assembler subroutine contained in PRO.LIB

Purpose:

ClearScr will clear all or a portion of the screen to a specified color.

Syntax:
CALL ClearScr(ULRow%, ULCo1%, LRRow%, LRCo1%, Colr%, Page%)

Where:

ULRow%, ULCol%, LRRow%, and LRCol% indicate which
portion of the screen is to be cleared, and Colr % is the color to
clear it to. If -1 is used for Colr % , the current screen colors will be
maintained.

Page% indicates the video page to be cleared, which is relevant
only when a color monitor is installed. If Page% is set to -1,
ClearScr will use the current page.

Comments:

ClearScr is intended primarily for clearing only a portion of the
screen, though it could of course be used for the entire screen. The
best way to clear the entire screen is to use BASIC's CLS
command. To have CLS clear to a different color, simply use the
COLOR statement to set that color.

When using ClearScr, understand that the screen is cleared by
printing blank spaces. Therefore, to clear to a particular color, it is
the background color that you will specify.

The color will be given as a single byte in the format used by
QuickPak Professional. See the COLORS .BAS description for more
information about combining foreground and background colors to a
single byte.

9-16 Crescent Software, Inc.

QuickPak Professional Chapter 9

ClearScr0
assembler subroutine contained in PRO.LIB

Purpose:

ClearScr0 will clear all or a portion of the screen to a specified
color.

Syntax:

CALL ClearScrO(ULRow%, ULCol%, LRRow%, LRCol%, Colr%)

Where:

ULRow%, ULCol%, LRRow%, and LRCol% indicate which
portion of the screen is to be cleared, and Colr% is the color to
clear it to. If -1 is used for Colr%, the current screen colors will be
maintained.

Comments:

ClearScr0 is nearly identical to ClearScr, except it clears text page
zero only. Because many programs do not need the ability to work
with multiple pages, the additional code to accommodate that
feature is omitted. However, ClearScr0 recognizes all of the text
modes automatically.

Crescent Software, Inc. 9-17

I

I

Chapter 9 QuickPak Professional

Colors
BASIC program contained in COLORS.BAS

Purpose:

Unlike most of the QuickPak Professional programs, Colors is not
meant to be used as a callable module. Rather, it simply displays a
chart showing all the possible color combinations.

You should run it whenever you need to select an appropriate color
for a program, or to determine the color value that is needed for the
various video routines. Because most of those routines require a
combined foreground and background color variable, Colors is
provided to show the correct value.

Once the program is displaying the color chart, you may press
Shift-PrtSc to get a permanent copy for your wall.

For your information, the three formulas shown on the following
page may be used to convert a foreground and background color
into a single byte value. Three different ones are given because the
ones that are simpler and have less capability also use less code.

The first formula uses a simplified method that does not take a
flashing foreground or illegal background into account. If the
foreground color is such that it should cause a flashing effect
(greater than 15), the flashing will be ignored. And if the
background color is illegal (greater than 7) it will actually cause the
foreground to flash.

The second formula accommodates foreground flashing, but not an
illegal background. The third is the most complicated, but it also
prevent an illegal background color from causing unintentional
flashing. This is the approach we used in the assembler OneColor
function.

9-18 Crescent Software, Inc.

QuickPak Professional Chapter 9

Doesn't accommodate flashing or trap an illegal background:

Colr = FG + 16 * BG

Allows flashing, but doesn't trap an illegal background:

Colr = (FG AND 16) * 8 +(BG* 16) + (FG AND 15)

Allows flashing and traps illegal background values:

Colr = (FG AND 16) * 8 + ((BG AND 7) * 16) + (FG AND 15)

The color for any given character on the display is contained in a
single byte in screen memory, immediately following the
corresponding character byte. It is organized as follows:

7
Flash __J

Background

6 5 4 3 2 1 O -- bits

I I I ~I ~l~I ~I Foreground

It is also fairly simple to extract the individual foreground and
background components from a combined color byte:

FG = (Colr AND 128) \ 8 + (Colr AND 15)
BG= (Colr AND 112) \ 16

Crescent Software, Inc. 9-19

I

Chapter 9 QuickPak Professional

CsrSize
assembler subroutine contained in PRO.LIB

Purpose:

CsrSize will report the top and bottom scan lines that describe the
current cursor size.

Syntax:

CALL CsrSize(Top%, Bottom%)

Where:

Top% and Bottom% are returned holding the top and bottom scan
lines of the current text-mode cursor setting.

Comments:

In most programming situations your program will know the current
cursor size because you set it yourself using the LOCATE
command. The example below establishes a "normal" cursor size
on a color monitor:

LOCATE , , , 6, 7

Thus, CsrSize would return 6 and 7 for Top% and Bottom%,
respectively. But when you are creating re-usable modules that must
restore the cursor to its original size when it is finished, CsrSize is
the only way to know the correct values.

Notice that when the cursor is turned off (using LOCATE , , 0), the
Top% parameter will be returned with a value greater than 30. This
is because most programs hide the cursor by setting the top line to
an otherwise illegal value. In our tests on EGA, VGA, CGA and
Hercules display adapters, Top% was returned set to 39 when the
cursor was off.

9-20 Crescent Software, Inc.

QuickPak Professional Chapter 9

EGABLoad
BASIC subprogram contained in EGABSAVE.BAS

Purpose:

EGABLoad will load an EGA or VGA graphics screen from a
specified disk file.

Syntax:

CALL EGABLoad(FileName$)

Where:

FileName$ is the name of a file that has previously been saved with
the QuickPak Professional EGABSave routine.

Comments:

EGABLoad and its companion EGABSave are intended to be used
with either an EGA or VGA display in SCREEN 9. Comments in
the source code for these programs show how to accommodate the
added resolution used by a VGA in SCREEN 12.

The file name you specify must not contain an extension, and if one
is given it will be removed. The programs actually require four files
to be saved, with one each for the Red, Green, Blue, and intensity
(brightness) information.

A complete discussion of the concepts behind saving and loading
graphics screen images is given in the Tutorial section of this
manual.

An example of EGABLoad is given in the EGABSA VE.BAS I
demonstration program. ~

Crescent Software, Inc. 9-21

I

Chapter 9 QuickPak Professional

EGABSave
BASIC subprogram contained in EGABLOAD.BAS

Purpose:

EGABSave will save an EGA or VGA graphics screen to a
specified disk file.

Syntax:

CALL EGABSave(FileName$)

Where:

FileName$ is the name of a file to use when saving the screen
image to disk.

Comments:

EGABSave and its companion EGABLoad are intended to be used
with either an EGA or VGA display in SCREEN 9. Comments in
the source code for these programs show how to accommodate the
added resolution used by a VGA in SCREEN 12.

The file name you specify must not contain an extension, and if one
is given it will be removed. The programs actually require four files
to be saved, with one each for the Red, Green, Blue, and intensity
(brightness) information.

A complete discussion of the concepts behind saving and loading
graphics screen images is given in the Tutorial section of this
manual.

An example of EGABSave is given in the EGABSA VE.BAS
demonstration program.

9-22 Crescent Software, Inc.

QuickPak Professional Chapter 9

EGAMem
assembler function contained in PRO.LIB

Purpose:

EGAMem will report the amount of memory available on an EGA
display adapter.

Syntax:
Memory= EGAMem%

Where:

Memory% receives the number of 64K banks installed on the
display adapter. If an EGA is not installed, Memory instead
receives 0.

Comments:

Because EGAMem has been designed as a function, it must be
declared before it may be used.

Most of the EGA adapters sold today contain the full 256K required
to hold up to two screens with the full complement of colors.
However, many PC's still have the original IBM brand of adapter
with only 64K of memory.

The section in the QuickBASIC manual that describes the SCREEN
command clearly shows which colors and screen pages may be used
with an EGA, based on the amount of installed memory.

Crescent Software, Inc. 9-23

I

I

Chapter 9 QuickPak Professional

FillScrn
assembler subroutine contained in PRO.LIB

Purpose:

FillScrn will fill any rectangular portion of the display screen with
the specified character.

Syntax:

CALL Fi11Scrn(ULRow%, ULCol%, LRRow%, LRCo1%, Colr%, Char%, Page%)

Where:

ULRow%, ULCol%, LRRow%, and LRCol% describe the area to
be filled, and Colr% specifies which color to use. If Colr% is set to
-1, the current screen colors will be honored.

Char% is the ASCII value of the character to print, and Page%
indicates the video page to write to. If Page% is set to -1, then the
currently active page will be used.

Comments:

FillScrn is similar to the QuickPak Professional ClearScr routine,
except it lets you specify the character rather than using a blank
space.

FillScrn can be used effectively to create interesting background
patterns and textures in text mode using CHR$(176), CHR$(177),
or CHR$(178). Of course, you
may use any other character as well.

9-24 Crescent Software, Inc.

QuickPak Professional Chapter 9

Fil1Scrn0
assembler subroutine contained in PRO.LIB

Purpose:

Fil1Scrn0 will fill any rectangular portion of the display screen with
the specified character.

Syntax:

CALL FillScrnO(ULRow%, ULCo1%, LRRow%, LRCol%, Colr%, Char%)

Where:

ULRow%, ULCol%, LRRow%, and LRCol% describe the area to
be filled, Colr% specifies which color to use, and Char% is the
ASCII value of the character to print. If Colr% is set to -1, the
current screen colors will be honored.

Comments:

Fil1Scrn0 is nearly identical to FillScrn, except it writes to text
page zero only. Because many programs do not need the ability to
access multiple video pages, the additional code to accommodate
that feature has been omitted. However, FillScrn0 recognizes all of
the text modes automatically.

Crescent Software, Inc. 9-25

I

I

Chapter 9 QuickPak Professional

GetColor
BASIC subprogram contained in GETCOlOR.BAS

Purpose:

GetColor will return BASIC's currently active foreground and
background colors.

Syntax:

CALL GetColor(FG%, BG%)

Where:

PG% and BG% are the current foreground and background colors
that BASIC is using for PRINT statements.

Comments:

When a subprogram needs to use the COLOR statement prior to
printing, one serious drawback is that there is no way to know what
those colors had originally been. When creating reusable modules
that will be added to many programs, this prevents the subprogram
from being able to "clean up" after itself completely.

Of course, this is one of the main reasons for using QPrint, APrint,
and the other QuickPak Professional routines that accept a color
argument. Even though BASIC provides a way to read the current
cursor location with CSRLIN and POS(0), there is no such
equivalent to obtain the colors.

The method used by GetColor is admittedly clunky, especially when
you consider that the color information must be stored somewhere
in memory.

GetColor obtains BASIC's current colors by first saving the
character and color currently in the upper left corner of the screen.
Next, a blank space is printed there, and then the SCREEN function
is used to see what color was used. Finally, the original screen
contents are restored.

9-26 Crescent Software, Inc.

QuickPak Professional Chapter 9

GetVMode
assembler subroutine contained in PRO.LIB

Purpose:

GetVMode will report the current video mode, the currently active
display page, the page size, and the number of rows and columns.

Syntax:

CALL GetVMode(Mode%, Page%, PageSize&, Rows%, Columns%)

Where:

Mode% is the equivalent BIOS screen mode, and Page% is the
currently active page. The first page is Page 0, and not 1.
PageSize& is the number of bytes of display memory being used to
hold the current screen. Rows% and Columns% also indicate the
size of the screen, but in terms of characters.

Comments:

GetVMode is useful when you are writing program modules that are
needed by more than one program. In most cases, you will already
know the current screen mode since your program would have
previously set it. But if a subprogram may be called at various times
by different programs, this information will be invaluable.

GetVMode is also used to advantage in the QuickDOS utility, to
know if the PC is already in a 43 or 50 line mode.

The PageSize& variable is equally useful to determine the number
of bytes that must be saved or loaded when storing screen images in
a disk file. Saving and loading screen images is described in detail
in the tutorial section of this manual.

Crescent Software, Inc. 9-27

I

Chapter 9 QuickPak Professional

HCopy
assembler subroutine contained in PRO.LIB

Purpose:

HCopy performs the same action as BASIC's PCOPY command,
except it is designed to work with a Hercules or compatible display
adapter in text mode.

Syntax:

CALL HCopy(FromPage%, ToPage%)

Where:

FromPage% is the source page to be copied, and ToPage% is the
destination page to copy to.

Comments:

A Hercules display supports eight separate text pages, numbered
from Oto 7. However, QuickBASIC treats a Hercules display
adapter operating in text mode as if it were an ordinary
monochrome adapter. Therefore, attempting to use PCOPY will
result in an "Illegal Function Call" error.

Even though QuickBASIC will display only text page zero, the
adapter's memory may be used to store additional pages. For
example, to display, say, page three, you could use HCopy to save
page zero in an unused page, and then call it again to copy page
three down to page zero.

9-28 Crescent Software, Inc.

QuickPak Professional Chapter 9

HercThere
assembler function contained in PRO.LIB

Purpose:

HercThere will report if the QBHERC.COM or MSHERC.COM
Hercules graphic support program has been loaded into memory.

Syntax:

Loaded= HercThere%

Where:

Loaded will be set to -1 if QBHERC.COM or MSHERC.COM
program is resident, or O if it is not.

Comments:

Because HercThere has been designed as a function, it must be
declared before it may be used.

Even though QuickBASIC supports graphics using a Hercules
display adapter, a special TSR (terminate and stay resident)
program must be run first. If this is not done, attempting to use the
SCREEN 3 statement to enter graphics mode will cause an "Illegal
Function Call" error.

The QuickPak Professional Monitor function will tell you if a
Hercules display is installed in the host PC, but it does not detect if
the necessary support program has been loaded. This is what
HercThere is for.

QuickBASIC 4.0 comes with a program named QBHERC.COM
that contains the routines necessary for Hercules graphics, but it
was renamed to MSHERC.COM when QuickBASIC 4.5 was
introduced. HercThere will detect if either QBHERC.COM or
MSHERC.COM is loaded.

Crescent Software, Inc. 9-29

I

Chapter 9 QuickPak Professional

The following example shows one way you might use HercThere:

M = Monitor%
IF M = 2 THEN

IF NOT HercThere% THEN

'Monitor% returns 2 for
'a Hercules card

PRINT "Please run QBHERC.COM and start again."
ELSE

SCREEN 3
END IF

END IF

You could also use the QuickPak Professional StuffBuf routine to
create a batch file that runs QBHERC automatically, and then
re-runs your program.

9-30 Crescent Software, Inc.

QuickPak Professional Chapter 9

MakeMono
assembler subroutine contained in PRO.LIB

Purpose:

MakeMono will convert the colors on a text screen held in an
integer array to those suitable for display on a monochrome monitor.

Syntax:

CALL MakeMono(SEG Array%(Element), Size%)

Where:

Array%(Element) is the location in the array where the screen
begins, and Size% is the size of the screen in characters.

Comments:

One of the problems when designing screens to be displayed in a
program is deciding what colors should be used. If you know the
screen will be shown on a monochrome monitor, then you would
avoid using a colored background unless the text foreground color
is black (inverse colors). And if you are sure the screen will be
displayed only on a color computer, then any color combination will
be valid. However, the real problem is when the screen must be
acceptable on either display.

MakeMono is intended to be used with screens that are kept in an
array. See the discussion that accompanies the ScrnRest routine for
an explanation of loading screens from disk into an array prior to
displaying them.

MakeMono allows you to design a screen to be as attractive as
possible in color, but be able to quickly modify it if your program
detects a monochrome monitor. A simple algorithm is used by
MakeMono when it convert the colors.

If the text foreground color is black (inverse), then the color is left
unchanged. Otherwise the background is cleared to black, and the
foreground is set to white. However, the intensity and flashing color
attributes are left unchanged.

Crescent Software, Inc. 9-31

I

I

Chapter 9 QuickPak Professional

This provides readable text on any monochrome monitor, including
the original Compaq portable and the AT&T 6300. Those displays
are especially problematic because they look like a CGA to routines
that are designed to detect the type of monitor.

9-32 Crescent Software, Inc.

QuickPak Professional Chapter 9

MakeMon2
assembler subroutine contained in PRO.LIB

Purpose:

Like the original MakeMono routine, MakeMon2 will convert the
colors on a screen held in an integer array to those suitable for
display on a monochrome system. However, several additional
options are available.

Syntax:

CALL MakeMon2(SEG Array%(Start), NumE1s%, Code%)

Where:

Array%(Start) is the element in the array where the screen begins,
NumEls% is the number of elements in use, and Code% is a
conversion code that indicates how the colors are to be converted.

Comments:

MakeMon2 provides four different types of color conversion, as
shown in the table below.

1 All colors are forced to white on black.
2

3

4

All colors are forced to black on white.
All colors are forced to white on black, unless the
foreground is also black. In that case, the foreground is left
unchanged and the background is forced to white, to
preserve any inverse text. This is how the original
MakeMono operates.
All colors are forced to black on white, unless the
foreground is already white. In that case, the foreground is
left unchanged and the background is forced to black. This
is the opposite of the way MakeMono works.

See the description accompanying the MakeMono routine for more
discussion of when and why this routine should be used.

Crescent Software, Inc. 9-33

I

Chapter 9 QuickPak Professional

Monitor
assembler function contained in PRO.LIB

Purpose:

Monitor reports the type of display adapter that is currently active.

Syntax:

Mon= Monitor%

Where:

Mon receives the current monitor type, coded as shown in the table
below.

Comments:

Because Monitor is implemented as a function, it must be declared
before it may be used.

Monitor recognizes all of the popular display adapter types,
however it does not report which screen mode is currently active.
That information is available by using the GetVMode function.

The type of monitor detected will be returned as follows:

9-34

1
2
3
4
5
6
7
8
9

10
11

Monochrome adapter
Hercules adapter
CGA adapter
EGA adapter with a monochrome monitor
EGA adapter with a color monitor
VGA adapter with a monochrome monitor
VGA adapter with a color monitor
MCGA adapter with a monochrome monitor
MCGA adapter with a color monitor
EGA adapter with a color CGA monitor
IBM 8514/ A adapter

Crescent Software, Inc.

QuickPak Prqfessional Chapter 9

Knowing what type of monitor is installed in a system is very
important if you intend to use graphics commands in your
programs. For example, SCREEN 9 is legal only when an EGA or
VGA display is present, and SCREEN 3 works only with Hercules
monitors. Attempting to initiate an invalid screen mode will always
result in an "Illegal Function Call" error from BASIC. With
Monitor you can avoid that possibility by knowing which of the
possible screen modes may be used.

Monitor is also helpful in determining appropriate colors for a
program. For example, using colored backgrounds may result in
unreadable text on a monochrome monitor. Be aware that some
computers, such as the original Compaq portable and the AT&T
6300, have a CGA adapter connected to a monochrome monitor. In
those cases Monitor will report a CGA. You might consider
recognizing a command line switch such as /B to allow a user to
override the program's assumptions.

Crescent Software, Inc. 9-35

I

Chapter 9 QuickPak Professional

l\1PaintBox
assembler subroutine contained in PRO.LIB

Purpose:

MPaintBox is similar to PaintBox, except it always turns off the
mouse cursor before painting the screen. When it is finished the
cursor is turned back on.

Syntax:

CALL MPaintBox(ULRow%, ULCol%, LRRow%, LRCol%, Colr%)

Where:

ULRow%, ULCol%, LRRow%, and LRCol% describe the area of
the screen to be painted, and Colr% specifies the color to use.

Comments:

MPaintBox is used by the PullDown and VertMenu programs to
allow them to cooperate with a mouse. It operates almost identically
to the original PaintBox program, except the mouse cursor is turned
off while the screen is being painted. If this is not done, the screen
color at the mouse cursor location is destroyed when the mouse is
subsequently moved.

MPaintBox always paints on the currently active screen.

9-36 Crescent Software, Inc.

QuickPak Professional Chapter 9

l\1PRestore
assembler subroutine contained in PRO.LIB

Purpose:

MPRestore lets you redisplay any rectangular portion from a screen
that has been saved to an array using ScrnSave or ScrnSave0.

Syntax:
CALL MPRestore(ULRow%, ULCol%, LRRow%, LRCol%, Origina1Width%, _

SEG Array%(Start))

Where:

ULRow%, ULCol%, LRRow%, and LRCol% tell where the partial
image is to be placed on the screen. OriginalWidth % is how wide
(in characters) the original saved portion of the screen was, and
Array%(Start) is where in the array the desired portion begins.

Comments:

MPRestore is a fairly specialized routine, but if you need it at all,
you really need it. Where the normal ScrnRest routine can restore
only the same size screen that had been saved earlier (though it may
be restored anywhere), MPRestore lets you capture and redisplay
just a rectangular portion from the storage array. We needed
MPRestore to be able to re-size the editing screen in QEdit, though
it undoubtedly has other uses as well.

We call it MPRestore because the Mouse cursor is disabled like
MQPrint and the other "M" routines, and it lets you restore a
Partial screen.

The figure below shows a representation of a 25 x 80 screen, a
portion that had previously been saved with ScrnSave starting at
Array%(0), and how to determine the correct starting element in
Array%Q.

Crescent Software, Inc. 9-37

Chapter 9

1,1
3,4

YYYYYYYYYYY
YYYYYYYYYYY

QuickPak Professional

< -- restore the "X" portion
from below to here

2s I
r----••••••••----•••••·--••••-~

<--- original width= 25

<--- portion that has been
saved

I
I

Array (0) ----> :
I

Array (25)----> :

Array (50)----> :
Array (84 l: ----> XXXXXXXXXXX

t __________ xxxxxxxxxxx
<--- X's are what to restore

CALL MPRestore(3, 4, 4, 15, 25, SEG(Array%(84))

9-38 Crescent Software, Inc.

QuickPak Professional Chapter 9

MQPrint
assembler subroutine contained in PRO.LIB

Purpose:

MQPrint is similar to QPrint, except it always turns off the mouse
cursor before printing. When it is finished the cursor is turned back
on.

Syntax:
CALL MQPrint(X$, Colr%)

Where:

X$ is the string to be printed, and Colr% specifies the color to use.
If Colr% is set to -1, the current screen colors will be honored

Comments:

MQPrint is used by the PullDown and VertMenu programs to allow
them to cooperate with a mouse. It operates almost identically to the
original QPrint program, except the mouse cursor is turned off
while the string is being displayed. If this is not done, the screen
color at the mouse cursor location is destroyed when the mouse is
subsequently moved.

MQPrint always prints on the currently active screen page.

Crescent Software, Inc. 9-39

I

I

Chapter 9 QuickPak Professional

MScrnSave and MScrnRest
assembler subroutines in PRO.LIB

Purpose:

MScrnSave and MScrnRest are similar to ScrnSave and ScrnRest,
except they always turn off the mouse cursor while they are
working.

Syntax:

CALL MScrnSave(ULRow%, ULCol%, LRRow%, LRCol%, SEG A%(0))

or

CALL MScrnRest(ULRow%, ULCol%, LRRow%, LRCol%, SEG A%(0))

Where:

ULRow%, ULCol%, LRRow%, and LRCol% describe the area of
the screen to consider, and A% O is an integer array that is used to
hold the portion of the screen.

Comments:

MScrnSave and MScrnRest are used by the PullDown and
VertMenu programs to allow them to cooperate with a mouse. They
are nearly identical to the original ScrnSave and ScrnRest routines,
except they turn off the mouse cursor while the screen is being
accessed. If this is not done, the screen color at the mouse cursor
location is destroyed when the mouse is subsequently moved.

MScrnSave and MScrnRest always work with the currently active
screen page.

9-40 Crescent Software, Inc.

QuickPak Professional Chapter 9

OneColor
assembler function contained in PRO.LIB

Purpose:

OneColor accepts separate foreground and background color values,
and returns them combined in a single byte for use with the
QuickPak Professional video routines.

Syntax:

Colr = OneColor%(FG%, BG%)

Where:

FG% and BG% are the intended foreground and background colors,
and Colr% receives the combined value.

Comments:

Because OneColor is implemented as a function, it must be declared
before it may be used.

All of the QuickPak Professional video routines expect a single
value to specify both the foreground and background colors. The
colors are in fact stored this way by the PC's hardware, and
providing them in this format allows the video routines to operate
that much faster. Further, this saves variable memory in your
programs by eliminating an extra parameter.

The PC's hardware uses a convoluted method to combine the
foreground and background components of a color, and OneColor
will save you that much additional code and effort.

The formula used by OneColor is:

Colr = (FG AND 16) * 8 + ((BG AND 7) * 16) + (FG AND 15)

A description of the color byte and how each bit affects the
combined color is given in the discussion that accompanies the
COLORS.BAS program.

Crescent Software, Inc. 9-41

I

I

Chapter 9 QuickPak Professional

PaintBox
assembler subroutine contained in PRO.LIB

Purpose:

PaintBox will paint any rectangular area of the screen, without
disturbing the text that is already present.

Syntax:

CALL PaintBox(ULRow%, ULCol%, LRRow%, LRCol%, Colr%, Page%)

Where:

ULRow, ULCol%, LRRow%, and LRCol% describe the area of
the screen to be painted, Colr % specifies the color to use, and
Page% indicates which screen page is to be painted. If Page% is set
to -1, then the currently active screen will be painted.

Comments:

PaintBox is useful in a variety of programming situations to
highlight an area of a screen that already contains text. Using
BASIC alone would require you to first set new colors with the
COLOR command, and then print the text again.

We have used PaintBox in many of the BASIC programs that come
with QuickPak Professional. For example, the Lotus menus use
PaintBox to highlight and "un-highl ight" the currently active
choice. This saves time and reduces the size of the code by
eliminating many COLOR, LOCATE, and PRINT statements.

PaintBox is also used to create the shadowed effect in the various
BASIC pop-up utilities. In those cases PRINT statements couldn't
possibly be used, because it is the underlying screen that is being
shadowed. The subprograms have no way to know what text is
already on the screen, thus it would be impossible to use COLOR
and PRINT.

PaintBox is also used in QEdit to highlight the block of text as it is
being marked and unmarked.

9-42 Crescent Software, Inc.

QuickPak Professional Chapter 9

See the COLORS.BAS description for more information about
combining foreground and background colors to a single byte. Also
see the related routine PaintBox0.

Crescent Software, Inc. 9-43

Chapter 9 QuickPak Professional

PaintBox0
assembler subroutine contained in PRO.LIB

Purpose:

PaintBox0 will paint any rectangular area of the screen, without
disturbing the text that is already present.

Syntax:

CALL PaintBoxO(ULRow%, ULCol%, LRRow%, LRCol%, Colr%)

Where:

ULRow, ULCol%, LRRow%, and LRCol% describe the area of
the screen to be painted, and Colr% specifies the color to use.

Comments:

PaintBox0 is nearly identical to PaintBox, except it paints on text
page zero only. Because many programs do not need the ability to
print on multiple pages, the additional code to accommodate that
feature has been omitted. However, PaintBox0 recognizes all of the
text modes automatically.

See the COLORS .BAS description for more information about
combining foreground and background colors in a single byte.

9-44 Crescent Software, Inc.

QuickPak Professional Chapter 9

PrtSc
assembler subroutine contained in PRO.LIB

Purpose:

PrtSc sends a snapshot of the current text screen to a printer, as if
the PrtSc key was pressed.

Syntax:

CALL PrtSc(LPTNumber%, Page%)

Where:

LPTNumber% is 1, 2, or 3 to indicate which parallel printer to send
to, and Page% indicates which text screen page is to be printed.

If Page% is set to -1, then the current screen will be printed.

If a printer error occurs (invalid printer number, off-line, etc.), then
LPTNumber% will be returned as -1.

Comments:

Unlike the screen print facility that is built into all PC's, PrtSc lets
you send any text page to any parallel printer. Of course, the PrtSc
subroutine is meant to be called from your programs so the operator
doesn't have to press a key.

PrtSc accommodates all of the possible text screen modes including
40 and 80 columns, and 25, 43, and 50 lines, but it is not intended
for use in any of the graphics modes. The QuickPak Professional
ScrnDump routine is provided for printing graphics screens.

Crescent Software, Inc. 9-45

I

Chapter 9 QuickPak Professional

It is also possible to print just a portion of the screen. The example
below has nothing to do with PrtSc, and it is provided simply to show
how this could be done.

9-46

ULRow = 5: ULCol = 10
LRRow = 20: LRCol = 70

'portion of the screen to print

FOR X = ULRow TO LRRow
LPRINT TAB(ULCol); 'optional left margin

NEXT

FOR Y = ULCol TO LRCol
LPRINT CHR$(SCREEN(X, Y));

NEXT
LPRINT

Crescent Software, Inc.

QuickPak Professional Chapter 9

PrtSc0
assembler subroutine contained in PRO.LIB

Purpose:

PrtSc0 sends a snapshot of the current text screen to a printer, as if
the PrtSc key was pressed.

Syntax:
CALL PrtScO(LPTNumber%)

Where:

LPTNumber% is 1, 2, or 3 to indicate which printer to send to.

Comments:

PrtSc0 is nearly identical to PrtSc, except it prints from text page
zero only. Because many programs do not need the ability to work
with multiple pages, the additional code to accommodate that
feature has been omitted. However, PrtSc0 recognizes all of the
text modes automatically.

Crescent Software, Inc. 9-47

I

I

Chapter 9 QuickPak Professional

PUsing
assembler subroutine contained in PRO.LIB

Purpose:

PUsing is provided as a replacement for the BASIC PRINT USING
command, and it offers several enhancements.

Syntax:

CALL PUsing(STR$(Number), Image$, Color1%, Color2%, Page%, _
Row%, Column%)

Where:

Number is any number whether integer, single, or double precision,
and Image$ indicates how the result is to be formatted. Image$ may
contain both leading and trailing text as shown below.

Colorl % and Color2 % indicate the colors for the text and numeric
portions of Image$ respectively. Either color may be set to -1 to
maintain the current screen colors.

Page% tells PUsing what screen page to print to, which may
optionally be given as -1 to use the current page.

Row% and Column% specify where the printing is to be located on
the screen.

Comments:

By using the STR$ function, we are letting BASIC do the dirty
work of interpreting floating point numbers. This also lets PU sing
accept any type of numeric variable. If you do not use BASIC's
STR$ function and directly pass a string to PUsing, be sure to add
an extra space to the beginning of the number string that you are
formatting, i.e., 11 1234 11 becomes 11 1234 11

• Most of the
formatting codes that PRINT USING recognizes are supported,
including commas, dollar signs, and leading asterisks.

If the number will not fit within the allotted space, a percent sign is
not used to indicate an overflow. Instead, any preceding text will be
overwritten. The image string you give to PUsing will be in the
following format:

9-48 Crescent Software, Inc.

QuickPak Professional Chapter 9

Image$= "Some leading text####,.## this is trailing"

By specifying the color, row and column, you are assured that the
current cursor location and colors BASIC is using are not changed.
This is especially important when creating reusable modules that
will be called from different programs.

Unlike BASIC's PRINT USING, PUsing can accommodate any
number of digits. Used in conjunction with exponential notation,
PUsing can display extremely large numbers without creating an
error.

The table below summarizes PUsing's numeric formatting
capabilities:

represents each digit position
specifies a decimal point

+ causes the sign of the number (+ or -) to be added (the
sign must be the first character in the field)

** replaces leading spaces in the field with asterisks
$$ adds a dollar sign to the left of the number

$ combines the effects of and$$
specifies that commas are to be added to the formatted
string

Although BASIC accepts multiple commas in the image string,
PU sing requires only one. If there is a decimal point within the
string, the comma must be placed just before it. Otherwise, the
comma must be the last character.

See the COLORS.BAS description for more information about
combining foreground and background colors to a single byte.

PUsing is demonstrated in the DEMOCM.BAS example program.

Also see the description for FUsing elsewhere in this manual.

Crescent Software, Inc. 9-49

I

I

Chapter 9 QuickPak Professional

QPrint
assembler subroutine contained in PRO.LIB

Purpose:

QPrint will display a string very quickly at the current cursor
location.

Syntax:

CALL QPrint(X$, Colr%, Page%)

Where:

X$ is the string to be printed, Colr% is the color to use, and Page%
indicates which text page to print on.

If Colr% is -1, then the current display colors will be maintained.
Likewise, if Page% is -1, the currently active text page is used.

QPrint always prints at the current cursor location.

Comments:

QPrint was originally developed for use with QuickBASIC 2 and 3,
because those compilers send their display output through the PC's
BIOS. Printing through the BIOS is notoriously slow, and QPrint
provides an enormous boost in speed.

However, even with QuickBASIC 4, QPrint is noticeably faster.
Further, QPrint accepts any characters. Even though the newer
QuickBASIC 4 also writes directly to screen memory, it is slower
than QPrint because it must examine every character to see if it is a
special control code.

9-50 Crescent Software, Inc.

QuickPak Professional Chapter 9

For example, a CHR$(9) means to advance the cursor to the next
Tab position, CHR$(28) advances the cursor one column,
CHR$(12) clears the screen, and so forth. QPrint simply prints the
characters that you give it. Thus, any ASCII value may be
displayed.

Even though QPrint can print only strings, the BASIC STR$
function may be used to convert a number into a string form:

CALL QPrint(STR$(Number), Colr%, Page%)

See the COLORS.BAS description for more information about
combining foreground and background colors to a single byte.

Crescent Software, Inc. 9-51

I

Chapter 9 QuickPak Professional

QPrint0
assembler subroutine contained in PRO.LIB

Purpose:

QPrint0 displays a string very quickly at the current cursor location.

Syntax:

CALL QPrintO(X$, Colr%)

Where:

X$ is the string to be printed, and Colr% is the color to use. If
Colr % is -1, then the current display screen colors will be
maintained.

QPrint0 always prints at the current cursor location.

Comments:

QPrint0 is nearly identical to QPrint, except it prints to text page
zero only. Because many programs do not need the ability to print
on multiple pages, the additional code to accommodate that feature
has been omitted. However, QPrint0 recognizes all of the text
modes automatically.

9-52 Crescent Software, Inc.

QuickPak Professional Chapter 9

QPrintAny
assembler subroutine contained in PRO.LIB

Purpose:

QPrintAny provides a simple way for a BASIC program to utilize
two monitors at the same time.

Syntax:

CALL QPrintAny(X$, Colr%, MonCode%, Row%, Column%)

Where:

X$ is the string to be printed, and Colr% is the color to use. If
Colr% is set to -1, then the current screen colors will be maintained.

Mon Code% tells QPrintAny what type of monitor it is to print on as
shown in the table below, and Row% and Column% indicate where
the text is to be printed.

Comments:

Even though many PC's have two monitors connected, only one of
them may actually be active at a time. This makes it very difficult
to write programs that can access both monitors at the same time.

QPrintAny provides a simple solution to this problem, by letting
you specify the monitor that is not the currently active one. Even
when BASIC or the BIOS consider a monitor to be inactive, it will
still display whatever is in its display adapter's memory. Thus,
when the color monitor is currently active, you would tell
QPrintAny to print to the monochrome monitor.

The MonCode% variable accepts one of three possible values, to
indicate both the correct video segment, and whether CGA "snow
suppression" is required. The code is as follows:

1 Monochrome monitor at segment &HBOOO
2 CGA monitor at segment &HB800
3 EGA or VGA monitor at segment &HB800

Crescent Software, Inc. 9-53

I

I

Chapter 9 QuickPak Professional

QPrintAny will also accept a "negative" version of the code
returned by the QuickPak Professional Monitor% function. An
example of this is shown below.

Mon%= Monitor%
CALL QPrintAny(X$, Colr%, -Mon%, Row%, Column%)

The Row% and Column% variables assume the display is in an 80
column text mode. If QPrintAny is being used to print to a color
monitor and you had previously initialized it to 40 columns, simply
divide the Column% variable by 2.

Simiiarly, if you needed to clear the screen you could use:

CALL QPrintAny(SPACE$(2000), 7, MonCode%, 1, 1)

And to clear to the end of a given line use:

CALL QPrintAny(SPACE$(81 - StartColumn%), 7, MonCode%,
Row%, StartColumn%)

Because QPrintAny accepts the row and column rather than having
to call the BIOS to obtain that information, it is considerably faster
than any of the other QuickPak Professional quick print routines.

9-54 Crescent Software, Inc.

QuickPak Professional Chapter 9

QPrintRC
assembler subroutine contained in PRO.LIB

Purpose:

QPrintRC will display a string very quickly at a specified row and
column.

Syntax:

CALL QPrintRC(Work$, Row%, Column%, Colr%)

Where:

Work$ is the string to be printed, Row% and Column% tell where
to place it on the display, and Colr% is the combined foreground
and background color to use. If Colr% is set to -1, the current
screen colors are used.

Comments:

QPrintRC is modeled after the QuickPak Professional QPrintO
routine, except it uses Row and Column arguments rather than
relying on the current cursor position. It is thus much faster than
QPrintO, because it doesn't have to call the BIOS to get those
coordinates.

Crescent Software, Inc. 9-55

I

I

Chapter 9 QuickPak Professional

QPWindow
assembler subroutines contained in PRO.LIB

QPWindow is a collection of routines that provide a complete text
windowing manager that lets you establish a windowed viewport on
the screen, and print text in that window scrolling as needed
automatically.

Four routines are provided to set the window boundaries, print text,
clear the window, and locate the cursor within the window. The
syntax for these routines is as follows:

CALL QPWindowinit(BYVAL ULRow%, BYVAL ULCo1%, BYVAL LRRow%,
BYVAL LRCo1%)

CALL QPWindowPrint(Text$, BYVAL Colr%)

CALL QPWindowCLS(BYVAL Colr%)

CALL QPWindowLocate(BYVAL Row%, BYVAL Column%)

QPWindowlnit is called to set new window boundaries. It is not
necessary to call QPWindowlnit before using QPWindowPrint,
though you usually would. The initial default values are 1, 1, 25,
80. QPWindowlnit also checks the current cursor position, and
moves it into the window if necessary.

QPWindowPrint prints the text specified containing it within the
window and scrolling as necessary.

QPWindowCLS clears the window and places the cursor in the
upper-left corner, and it uses the color you give for clearing.

QPWindowLocate sets the cursor position within the virtual
window. Note that the QPWindowLocate values are virtual, and
are relative to the window's upper left corner. Therefore, CALL
QPWindowLocate{l, 1) places the physical cursor at the upper-left
edge of the window, and not at the upper-left edge of the video
screen.

9-56 Crescent Software, Inc.

QuickPak Professional Chapter 9

You can freely mix calls to the window routines with regular
PRINT and LOCATE statements. QPWindowPrint keeps track of
where it last printed, and when the window needs to be scrolled.
However, after calling QPWindowPrint the physical cursor is
placed immediately after the text that was just printed. Likewise,
QPWindowCLS positions the cursor at the upper-left corner of the
window after it clears the windowed portion of the screen.

All of these routines work in screen modes other than 80 columns,
and adjust their behavior automatically.

There is only minimal error trapping such as preventing against
locating the cursor outside of the current window boundaries. But
there's no added code to ensure, for example, that the upper-left
window boundary is higher than and to the left of the lower-right
boundary. QPWindowinit also makes no effort to ensure that you
use legal values. This is done on purpose-if you have a display
adapter that can show, say, 132 columns, then these routines will
accommodate that. However, rows and columns are limited to a
maximum of 255.

You can also use SetMonSeg to print to an integer array or other
block of memory, to create virtual screens of any size that are built
in the background and then copied to display memory using BCopy
or ScrnRest or MPRestore.

These windowing routines are demonstrated in the WINDOW .BAS
example program.

Crescent Software, Inc. 9-57

I

I

Chapter 9 QuickPak Professional

ReadScrn
assembler subroutine contained in PRO.LIB

Purpose:

ReadScrn will quickly read characters from the display screen, and
store them in a specified string variable.

Syntax:

CALL ReadScrn{Row%, Column%, X$, Page%)

Where:

Row% and Column% tell ReadScrn where on the screen the
characters are located, X$ receives the screen contents, and Page%
indicates which video page to read. If Page% is set to -1, then
ReadScrn will read from the currently active screen page.

The number of characters to be read is specified by the length of X$.

Comments:

ReadScrn is considerably faster than BASIC's SCREEN statement
because it doesn't have to call the BIOS for each character. One of
the things that makes the BIOS so painfully slow when accessing
video memory is that it reads only one character at a time. Further,
each time the BIOS reads a character, it must see what type of
display is present, determine if it is in graphics mode, calculate the
display memory address, and so forth.

Because ReadScrn does this only once ahead of time, it can read
any number of characters about as quickly as the BIOS can read just
one.

The length of X$ is used to tell ReadScrn how many characters to
read to avoid the possibility of corrupting string memory. If
ReadScrn had been designed to accept the number of characters in a
separate variable and X$ wasn't long enough, a complete crash
would be likely.

9-58 Crescent Software, Inc.

QuickPak Professional Chapter 9

The example below shows how to read 25 characters from the
screen at location 2, 10 from the currently active text page.

X$ = SPACE$(25)
CALL ReadScrn(2, 10, X$, -1)

Crescent Software, Inc. 9-59

Chapter 9 QuickPak Professional

ReadScrn0
assembler subroutine contained in PRO.LIB

Purpose:

ReadScrn0 will quickly read characters from the display screen,
and store them in a specified string variable.

Syntax:

CALL ReadScrnO(Row%, Column%, X$)

Where:

Row% and Column% tell ReadScrn0 where on the screen the
characters are located, and X$ receives the screen contents.

The number of characters to read is specified by the length of X$.

Comments:

ReadScrn0 is nearly identical to ReadScrn, except it reads from text
page zero only. Because many programs do not need the ability to
read from multiple pages, the additional code to accommodate that
feature has been omitted. However, ReadScrn0 recognizes all of
the text modes automatically.

9-60 Crescent Software, Inc.

QuickPak Professional Chapter 9

ScrnDump
assembler subroutine contained in PRO.LIB

Purpose:

ScrnDump will take a snapshot from a graphics screen, regardless
of the mode*, and send it to nearly any type of graphics printer.

Syntax:

CALL ScrnDump(DPI$, LPTNumber%, Translate%)

Where:

DPI$ indicates the Dots Per Inch resolution when sending to a
Hewlett-Packard LaserJet or compatible printer, or is a null string if
printing on an Epson 9-Pin Dot Matrix or compatible printer.

LPTNumber% is either 1, 2, or 3, to tell ScrnDump which parallel
printer port to use. If a printer error occurs, ScrnDump will return
LPTNumber% set to -1.

Translate% is set to 1 if the screen colors are to be translated to
equivalent tile patterns, or O to print all colors as solid black.

When printing on a laser printer ScrnDump positions the upper left
corner of the image at the printer's current cursor position.

Comments:

ScrnDump will automatically recognize the current video mode, and
determine the number of screen bytes being used and their
organization. There are several different ways that screen memory
may be organized, which makes designing a routine such as
ScrnDump extremely difficult.

The CGA screen modes use a method called "interlacing," where
consecutive screen memory addresses occupy alternating rows on
the display. The EGA modes are even more complicated, because
each color is contained in a separate bank of memory. A Hercules
screen uses interlacing similar to the CGA, except that screen
memory is organized into four groups instead of two. Further, the
LaserJet and Epson printers expect their graphics data in two
entirely different formats.

Crescent Software, Inc. 9-61

Chapter 9 QuickPak Professional

The table below shows the acceptable values for DPI$.

"75"
"100"
"150"
"300"

""

lowest resolution, largest picture size
medium-large resolution, medium-large picture size
medium-small resolution, medium-small picture size
highest resolution, smallest picture size
send the output to an Epson or compatible

Notice that when sending to a LaserJet, DPI$ must contain exactly
three characters. Thus, to print at 75 dots per inch you will need to
add a leading blank space, as shown above.

The translate option is provided to distinguish the colors on the
screen when they are printed in a single color on paper. ScrnDump
is demonstrated in the SCRNDUMP .BAS example program.

"'Does not support VGA screen 13.

9-62 Crescent Software, Inc.

QuickPak Professional Chapter 9

ScrnRest
assembler subroutine contained in PRO.LIB

Purpose:

ScrnRest will restore a screen that had previously been saved with
ScrnSave or ScrnSave0.

Syntax:
CALL ScrnRest(ULRow%, ULCol%, LRRow%, LRCol%, SEG Array%(1), Page%)

Where:

ULRow%, ULCol%, LRRow%, and LRCol% describe the area of
the screen, Array%() is an integer array used to hold the screen,
and Page% indicates the page to restore to. If Page% is -1 the
current screen is restored. Notice that a screen may be restored to
any legal text page, regardless of which page it had been saved
from.

Comments:

Besides its intended purpose for restoring a screen that has been
saved with ScrnSave, ScrnRest can also display screens that have
been loaded from a disk file. Saving and loading screens from disk
are discussed separately in a tutorial, however those examples
assume that BLOAD will be used to get the screen from disk onto
the display.

Once a screen has been saved from display memory, it may be
loaded into an array prior to being displayed. This method is
particularly valuable when several screens are involved. That is,
you would load different screens each into their own array, and then
display them as they are needed.

Crescent Software, Inc. 9-63

I

Chapter 9 QuickPak Professional

The example below first loads a previously BSAVE'd text screen
from a disk file into an integer array, and then calls upon ScrnRest to
display it.

REDIM Array%(2000) 'make room for the screen
DEF SEG = VARSEG (Array%(!)) 'where to begin loading
BLOAD "screen.", VARPTR(Array%(1)) 'load it
CALL ScrnRest(l, 1, 25, 80, SEG Array%(!). -1) 'show it
ERASE Array% 'free up the memory

Other examples of saving and restoring a screen are provided with
QuickPak Professional in the SCRNSR.BAS and DEMOMGR.BAS
demonstration programs. Also see the related routines ScrnRest0,
ScrnSave, ArraySize, MakeMono, and WindowMgr.

9-64 Crescent Software, Inc.

QuickPak Professional Chapter 9

ScrnRest0
assembler subroutine contained in PRO.LIB

Purpose:

ScrnRest0 will restore a screen that had previously been saved with
ScrnSave or ScrnSave0.

Syntax:
CALL ScrnRestO(ULRow%, ULCol%, LRRow%, LRCol%, SEG Array%(!))

Where:

ULRow%, ULCol%, LRRow%, and LRCol% describe the area of
the screen being restored, and Array%O is an integer array used to
hold the screen.

Comments:

ScrnRest0 is nearly identical to ScrnRest, except it restores to text
page zero only. Because many programs do not need the ability to
work with multiple pages, the additional code to accommodate that
feature has been omitted. However, ScrnRest0 recognizes all of the
text modes automatically.

Crescent Software, Inc. 9-65

I

I

Chapter 9 QuickPak Professional

ScrnSave
assembler subroutine contained in PRO.LIB

Purpose:

ScrnSave will save all or part of a text screen into an integer array,
to allow restoring it again at a later time.

Syntax:

DIM Array%(1 TO 2000)
CALL ScrnSave(ULRow%, ULCol%, LRRow%, LRCol%, SEG Array%(1), Page%)

Where:

ULRow%, ULCol%, LRRow%, and LRCol% describe the area of
the screen to be saved, Array%() is an integer array used to hold
the screen, and Page% indicates which text page to save from. If
Page% is -1, the current screen is saved.

Comments:

ScrnSave and its companion ScrnRest are used extensively by many
of the QuickPak Professional BASIC subprograms. For example, all
of the pop-up utilities save the screen before they do anything else,
so the original underlying screen may be restored when they finish.

Screens are saved into integer arrays, so it is up to you to ensure
that the arrays have been sufficiently dimensioned. Integer arrays
are used for several reasons. The most important is that an integer
array is organized in a manner similar to a display screen. That is,
the number of screen characters saved exactly corresponds to the
number of array elements that are needed. Further, by using an
array you may reclaim memory when the saved screen is no longer
needed-simply erase the array. Finally, arrays allow you to save as
many screens as necessary, with each in its own array.

Examples of saving and restoring screens are given in
SCRNSR.BAS and DEMOMGR.BAS. Also see ScrnRest,
ScrnSave0, ArraySize, MakeMono, and WindowMgr.

9-66 Crescent Software, Inc.

QuickPak Professional Chapter 9

ScrnSave0
assembler subroutine contained in PRO.LIB

Purpose:

ScrnSave0 will save all or a portion of a text screen into an integer
array, to allow restoring it again at a later time.

Syntax:
CALL ScrnSaveO(ULRow%, ULCol%, LRRow%, LRCol%, SEG Array%(!))

Where:

ULRow%, ULCol % , LRRow%, and LRCol % describe the area of
the screen to be saved, and Array%O is an integer array used to
hold the screen.

Comments:

ScrnSave0 is nearly identical to ScrnSave, except it saves from text
page zero only. Because many programs do not need the ability to
work with multiple pages, the additional code to accommodate that
feature has been omitted. However, ScrnSave0 recognizes all of the
text modes automatically.

Crescent Software, Inc. 9-67

I

Chapter 9 QuickPak Professional

ScrollD, ScrollL, ScrollR, ScrollU
four assembler subroutines contained in PRO.LIB

Purpose:

ScrollD will scroll any portion of the display screen down a
specified number of lines. ScrollL, ScrollR, and ScrollU scroll left,
right, and up respectively.

Syntax:

CALL ScrollD(ULRow%, ULCol%, LRRow%, LRCol%, Lines%, Page%)

Where:

ULRow%, ULCol%, LRRow%, and LRCol% describe the area of
the screen to be scrolled, Lines% is the number of lines to scroll,
and Page% indicates which video page is to be scrolled. If Page% is
set to -1, the current screen will be scrolled.

Comments:

For the most part, we recommend using one of the APrint routines
to manipulate text that must be moved around. However, there are
many situations where the screen must be able to be scrolled
directly.

For example, the QuickPak Professional ·spreadsheet uses a
two-dimensional array to hold the worksheet contents. When the
screen must be shifted up or down a line, Spread uses ScrollU or
ScrollD, and then updates only the bottom or top. The Cale
subprogram also uses Scrol!U to move the result from previous
calculations within its window.

All four of these routines will operate correctly in any text mode,
and on any legal screen page. After a line of text has been scrolled,
its previous location is erased to the current screen color
automatically.

A demonstration of all four scroll routines is given in the
SCROLL.BAS example program.

9-68 Crescent Software, Inc.

QuickPak Professional Chapter 9

SetMonSeg
assembler subroutine contained in PRO.LIB

Purpose:

SetMonSeg assigns a new video display segment that will be used
by all of the QuickPak Professional video routines.

Syntax:

CALL SetMonSeg(NewSegment%)

Where:

NewSegment% is the new segment that will be used for subsequent
video operations, or 0 to restore it to the appropriate value for the
currently active monitor.

Comments:

There are two important reasons you would want to change the
display segment used by the QuickPak Professional video routines.
One is to cooperate with multi-tasking programs such as Windows
and DesqView. These programs assign a new video segment for
each application that is running, to prevent one program from
overwriting another's output screen.

The second important reason is to support virtual screens. Virtual
screens let you print in the background, without disturbing what is
currently being displayed. This is typically done by printing to an
array or other area of memory. Then, to display the screen later
you would simply copy the array contents to display memory. With
QuickPak Professional this is done using either the ScrnRest,
ScrnRest0, or MScrnRest subroutines.

See VIRTUAL.BAS for a brief example that shows how to
manipulate virtual screens using SetMonSeg, QPrintRC, and
ScrnRest0.

Crescent Software, Inc. 9-69

I

Chapter 9 QuickPak Professional

SplitColor
assembler subroutine contained in PRO.LIB

Purpose:

SplitColor accepts a single byte that contains combined foreground
and background colors, and returns the separate components.

Syntax:

CALL SplitColor(Colr%, FG%, BG%)

Where:

Colr% is the incoming combined color value, and PG% and BG%
are the foreground and background colors.

Comments:

All of the QuickPak Professional video routines expect a single
value to specify both the foreground and background colors. The
colors are in fact stored this way by the PC's hardware, and
providing them in this format allows the video routines to operate
that much faster. Further, variable memory needed by a program is
minimized by eliminating yet another extra parameter.

SplitColor lets you extract the foreground and background
components from a combined color. The formulas it uses are:

FG = (Colr AND 128) \ 8 + (Colr AND 15)
BG= (Colr AND 112) \ 16

A description of the color byte and how each bit affects the
combined color is given in the discussion that accompanies the
COLORS.BAS program.

9-70 Crescent Software, Inc.

QuickPak Prqfessional Chapter 9

WindowMgr
BASIC subprogram contained in WINDOMGR.BAS

Purpose:

WindowMgr is a complete window manager that frees the
programmer from having to dimension and erase arrays, and keep
track of windows as they are opened and closed.

WindowMgr also clears the screen to a specified color, and
optionally draws a box around the window.

Syntax:
CALL WindowMgr(WindowNumber%, Action%, ULRow%, ULCol%, LRRow%,

LRCol%, Colr%)

Where:

WindowNumber% is the window number to be opened or closed. If
WindowNumber% is zero and a window is to be opened, then the
next available window number is used automatically. If
WindowNumber% is zero and the window is being closed, then the
most recently opened window will be closed.

Action% tells Window Mgr whether to open or close a window. 1
means open, and O means close.

ULRow%, ULCol%, LRRow%, and LRCol% define the area of
the screen for the current window. When a window is being closed,
using a zero for any of the corner parameters tells Window Mgr to
use the corners that were given when the window was originally
opened.

Colr% indicates the color to use when clearing the screen and
drawing the box. Colr% is a single value that represents the
combined foreground and background colors. If Colr% is zero, then
a box is not drawn.

Comments:

When more than one or two screens must be saved and restored in a
program, WindowMgr will greatly reduce the amount of
programming that is needed.

Crescent Software, Inc. 9-71

I

Chapter 9 QuickPak Professional

A description of using combined colors is given in the discussion
that accompanies the COLORS.BAS program.

WindowMgr is demonstrated in context in the DEMOMGR.BAS
example program.

9-72 Crescent Software, Inc.

QuickPak Professional Chapter 9

Wipes
BASIC subprograms contained in WIPES.BAS

Purpose:

Wipes contains a variety of subprograms that perform interesting
visual effects. Several subprograms are included along with a demo
in the same file that illustrate scrolling the text screen in a number
of imaginative ways. Try it, you'll like it.

Crescent Software, Inc. 9-73

I

I

Chapter 10
Reference

I

I

Routines Contained in QuickPak Professional:

Array Manipulation .. 1
Array Sorts 5
Date/Time 7
Directory . 9
Disk and Disk Drive 10
Error Handling 12
File Management 13
Financial Functions 17
Keyboard 19
Menus 21
Miscellaneous 23
Mouse 26
Numeric Functions and Subs 28
Printer 32
Save/Load/Display Screens 33
Sound 34
Statistical Functions .. 35
String Manipulation .. 36
Text/Data Entry 42
Utility Programs 44
Video 45

QuickPak Professional Chapter 10

ARRAY MANIPULATION

NAME

Addlnt

DeleteStr

DeleteT

DimBits

Fill2

Fill4

Fill8

Find

Find2

FindB

FindB2

PURPOSE

Adds a constant value to all of the elements in a
specified portion of an integer array.

Removes an element from a conventional (not
fixed-length) string array.

Removes an element from a fixed-length string or
TYPE array.

Creates a BASIC string that will be used to hold a
Bit array.

Assigns all of the elements in a specified portion
of an integer array to any value.

Assigns all of the elements in a specified portion
of a single precision array to any value.

Assigns all of the elements in a specified portion
of a double precision array to any value.

Searches all or part of a conventional (not
fixed-length) string array forward looking for the
first occurrence of a string or sub-string.

Same as Find, except Find2 honors capitalization.

Same as Find, except FindB searches backwards.

Same as Find, except FindB2 searches backwards
and honors capitalization.

Crescent Software, Inc. 10-1

I

I

Chapter 10 QuickPak Professional

ARRAY MANUPULATION (Cont'd)

NAME

FindExact

FindT

FindT2

FindTB

FindTB2

FindLast

GetBit

IMaxC@

IMaxD#

IMaxI%

IMaxL&

10-2

PURPOSE

Searches an entire conventional (not fixed-length)
string array for an exact match. Unlike Find,
Find2, and FindB, and the other "Find" routines,
this one requires an exact match.

Searches all or part of a fixed-length string array
for any string or sub-string.

Same as FindT, except FindT2 honors
capitalization.

Same as FindT, except FindTB searches
backwards.

Same as FindT, except FindTB2 searches
backwards and honors capitalization.

Scans a conventional (not fixed-length) string
array backwards for the last non-blank element.

Returns the status (On or oft) of an element in a
QuickPak Professional Bit array.

Searches an entire currency array and returns the
element number of the largest value.

Searches an entire double precision array and
returns the element number of the largest value.

Searches an entire integer array and returns the
element number of the largest value.

Searches an entire long integer array and returns
the element number of the largest value.

Crescent Software, Inc.

QuickPak Professional Chapter JO

ARRAY MANUPULATION (Cont'd)

NAME PURPOSE

IMaxS!

IMinC@

IMinD#

IMinI%

IMinL&

IMinS!

Initlnt

InsertStr

InsertT

LongestStr

MaxC@

MaxD#

Maxi%

Searches an entire single precision array and
returns the element number of the largest value.

Searches an entire currency array and returns the
element number of the smallest value.

Searches an entire double precision array and
returns the element number of the smallest value.

Searches an entire integer array and returns the
element number of the smallest value.

Searches an entire long integer array and returns
the element number of the smallest value.

Searches an entire single precision array and
returns the element number of the smallest value.

Initializes all or a specified portion of an integer
array with increasing values.

Inserts an element at any point in a conventional
(not fixed-length) string array

Inserts an element at any point in a fixed-length
string, numeric, or TYPE array.

Returns the length of the longest element in an
entire string array.

Returns the largest value in a specified portion of
a currency array.

Returns the largest value in a specified portion of
a double precision array.

Returns the largest value in a specified portion of
an integer array.

Crescent Software, Inc. 10-3

I

I

Chapter 10 QuickPak Professional

ARRAY MANUPULATION (Cont'd)

NAME PURPOSE

MaxL&

MaxS!

MinC@

MinD#

Mini%

MinL&

MinS!

Search

SearchT

SearchT2

SetBit

10-4

Returns the largest value in a specified portion of
a long integer array.

Returns the largest value in a specified portion of
a single precision array.

Returns the smallest value in a specified portion
of a currency array.

Returns the smallest value in a specified portion
of a double precision array.

Returns the smallest value in a specified portion
of an integer array.

Returns the smallest value in a specified portion
of a long integer array.

Returns the smallest value in a specified portion
of a single precision array.

Scans all or a portion of a numeric array to find
the first match of a given value. Searching may
be performed either forward or backwards, and
the match may be specified to be exact, less than
or equal to, or greater than or equal to.

Allows you to search for any type of data
(numeric or string) in a TYPE array and is case
sensitive.

Same as SearchT but is case-insensitive.

Sets an element in a QuickPak Professional Bit
array to either one or zero (true or false).

Crescent Software, Inc.

QuickPak Professional

ARRAY SORTS

NAME

ISortC

ISortD

ISortI

ISortL

ISortS

ISortT

ISortT2

ISortStr

ISortStr2

KeySort

SortD

Chapter 10

PURPOSE

Places in order all or a specified portion of a
currency array by sorting a parallel index array
(ascending or descending order).

Places in order all or a specified portion of a
double precision array by sorting a parallel index
array (ascending or descending order).

Places in order all or a specified portion of an
integer array by sorting a parallel index array
(ascending or descending order).

Places in order all or a specified portion of a long
integer array by sorting a parallel index array
(ascending or descending order).

Places in order all or a specified portion of a
single precision array by sorting a parallel index
array (ascending or descending order).

Places in order all or a specified portion of a
fixed-length string or TYPE array by sorting a
parallel index array (ascending or descending
order).

Same as ISortT, except sorting is performed
without regard to capitalization.

Places in order all or a specified portion of a
conventional (not fixed-length) string array by
sorting a parallel index array (ascending or
descending order).

Same as ISortStr, except sorting is performed
without regard to capitalization.

Sorts a user-defined TYPE array based on any
number of keys (ascending or descending order).

Places in order all or a portion of a double
precision array (ascending or descending order).

Crescent Software, Inc. 10-5

I

I

Chapter 10

ARRAY SORTS (Cont'd)

NAME

SortC

Sortl

SortL

SortS

SortT

SortT2

SortStr

SortStr2

10-6

QuickPak Professional

PURPOSE

Places in order all or a portion of a currency
array (ascending or descending order).

Places in order all or a portion of an integer array
(ascending or descending order).

Places in order all or a portion of a long integer
array (ascending or descending order).

Places in order all or a portion of a single
precision array (ascending or descending order).

Places in order all or a portion of a fixed-length
string or TYPE array (ascending or descending
order).

Same as SortT, except sorting is performed
without regard to capitalization.

Places in order all or a portion of a conventional
string array (ascending or descending).

Same as SortStr, except sorting is performed
without regard to capitalization.

Crescent Software, Inc.

QuickPak Professional

DATE/TIME

NAME

Clock

Clock24

Date2Day

Date2Num

DayName$

EDate2Num

ENum2Date$

MonthName$

Num2Date$

Num2Day

Chapter 10

PURPOSE

Provides a continual display of the current time,
without having to loop repeatedly in a BASIC
program.

Alternate version of the Clock routine that
displays the time in a 24-hour format, without the
"am" or "pm" indicator.

Accepts an incoming date string, and returns the
appropriate day of the week (1-7).

Converts a date in string form to an equivalent
integer variable to allow date arithmetic.

Accepts an integer value between 1 and 7, and
returns an equivalent day name as a string in the
form "Mon", "Tue", etc.

Accepts a date in European "DDMMYY"
format, and returns a corresponding integer value.

Converts a previously encoded integer date to an
equivalent string in European format.

Accepts an integer value between 1 and 12, and
returns an equivalent month name as a string in
the form "Jan", "Feb", "Mar", etc.

Converts a previously encoded integer date to an
equivalent date string.

Accepts an integer number that represents a date
in the QuickPak Professional format, and returns
the appropriate day of the week (1-7).

Crescent Software, Inc. 10-7

I

I

Chapter 10

DATE/TIME (Cont'd)

NAME

Num2Time$

Pause

Pause2

Pause3

PDQ Timer&

SysTime

Time2Num&

WeekDay

10-8

QuickPak Professional

PURPOSE

Converts a long integer that represents the
number of seconds past midnight to an equivalent
time in string form.

Pauses a program's execution for a specified
period of time, to a resolution as small as 1118th
second.

Pauses a programs execution for a specified
number of microseconds.

Pauses a programs execution for a specified
period of time, to a resolution as small as 1
millisecond.

An integer-only TIMER replacement; does not
require the use of the floating point math library.

Obtains the current system time through DOS,
and returns it in a string formatted to the
hundredth of a second.

Converts a time in string form to an equivalent
number of seconds after midnight to allow time
arithmetic.

Returns the day of the week (1-7) given a legal
DOS date in a string form.

Crescent Software, Inc.

QuickPak Professional

DIRECTORY

NAME

CDir

DCount

DirTree

ExeName$

FulIName

GetDir$

KillDir

MakeDir

NameDir

ReadDir

ReadDirT

Chapter JO

PURPOSE

Changes directories.

Reports the number of directories under the
current directory that match a particular
specification.

Reads a disk's entire directory tree, and returns it
in two string arrays suitable for display.

Returns the full name of the currently executing
program, including the drive, path, and file name.

Accepts a file name, and returns it adding the
complete path information.

Returns the current directory for either a
specified drive or the default drive.

Removes a specified directory.

Creates a directory.

Renames a directory

Obtains a list of directory names from disk and
loads them into a conventional (not fixed-length)
string array.

Obtains a list of directory names from disk and
loads them into a fixed-length string array.

Crescent Software, Inc. 10-9

I

I

Chapter 10 QuickPak Professional

DISK AND DISK DRIVE

NAME PURPOSE

Disklnfo Reports a disk's sector and cluster makeup.

DiskRoom& Returns the number of bytes available on the
specified drive.

DiskSize& Returns the total number in bytes of a specified
disk drive.

FormatDiskette Adds disk formatting capabilities to your
programs.

GetDisketteType Returns the type of floppy disk drive that is
installed.

GetDrive Returns the current default disk drive.

GetVol$ Returns the disk volume label for either the
default or a specified drive.

GoodDrive Determines whether a specified drive letter is
valid.

LastDrive Returns the last consecutively available drive in a
PC.

NetDrive Reports if a given drive is remote on a network.

PutVol Creates or renames a disk volume label.

ReadTest Reports whether a specified disk drive is ready
for reading.

Removable Reports if a given drive's media is removable (a
floppy drive).

SetDrive

WriteSect

10-10

Allows changing the current default drive.

Writes new data to any disk sector from either a
conventional or fixed-length string.

Crescent Software, Inc.

QuickPak Professional Chapter 10

DISK AND DISK DRIVE (Cont'd)

NAME

WriteSect2

WriteTest

PURPOSE

Writes new data to a group of disk sectors from
either a conventional or fixed-length string.

Reports if a specified disk drive is ready for
writing.

Crescent Software, Inc. 10-11

I

I

Chapter 10 QuickPak Professional

ERROR HANDLING

NAME

DOSError

ErrorMsg$

SetError

SetLevel

WhichError

10-12

PURPOSE

Reports if an error occurred during the last call to
a QuickPak Professional DOS routine.

Returns an appropriate message given any of the
BASIC error numbers for a DOS service.

Allows a BASIC program to set or clear the
DOSError and WhichError functions.

Allows a BASIC program to set the DOS error
level.

Reports which error if any occurred during the
last call to a QuickPak Professional DOS routine.

Crescent Software, Inc.

QuickPak Professional Chapter 10

FILE MANAGEMENT

NAME

ClipFile

Exist

FastLoad

FastSave

FClose

FCopy

FCount

FCreate

FEof

FFlush

FGet

FGetA

FGetAH

FGetR

FGetRT

PURPOSE

Establishes a new length for a file either longer or
shorter.

Determines the existence of a file.

Loads an entire text file into an array.

Saves an entire text file to disk.

Closes a file opened with the QuickPak
Professional FOpen Statement.

Copies a file from within BASIC without
requiring SHELL.

Reports the number of files that match a
particular specification.

Creates a file in preparation for writing to it with
QuickPak Professional file handling routines.

Reports if the current DOS Seek location is at the
end of a specified file.

Flushes a file's buffers to disk without requiring
the file to be closed.

Reads data from a disk file into a string.

Reads data from a disk file to an array.

Retrieves an entire huge array of any size from
disk in a single operation.

Reads data from a random disk file.

Reads data from disk file into a TYPE variable.

Crescent Software, Inc. 10-13

I

I

Chapter 10 QuickPak Professional

FILE MANAGEMENT (Cont'd)

NAME PURPOSE

FGetRTA

FGetT

FileComp

FileCopy

FileCrypt

Filelnfo

FileSize&

FileSort

FLinput$

FLoc&

FLof&

FOpen

FOpenAll

FOpenS

10-14

Reads data from a random disk file into a TYPE
array.

Reads binary data from a disk file into a TYPE
variable.

Reports if any two files are the same.

Serves as a "front end" to the FCopy routine, and
allows the use of wild cards.

Encrypts a file using a password provided by the
calling program.

Returns all of the characteristics of a file.

Returns the length of a named file.

Sorts a random access disk file on any number of
keys.

Reads a line of data from a file opened with the
QuickPak Professional FOpen routine.

Reports the current DOS file pointer position for
files opened with the QuickPak Professional
FOpen routine.

Returns the length of a file opened with the
QuickPak Professional FOpen routine.

Opens a disk file in preparation for reading or
writing data.

Opens a file for any access mode including all of
the variations required for a network.

Opens a file for read/write access on a network
while allowing others read access only.

Crescent Software, Inc.

I

QuickPak Professional Chapter 10

FILE MANAGEMENT (Cont'd)

NAME PURPOSE

FPut

FPutA

FPutAH

FPutR

FPutRT

FPutRTA

FPutT

FSeek

FStamp

GetAttr

Handle2Name

KillFile

LineCount

LockFile

NameFile

QBLoad

QBSave

Writes data to a disk file from a string.

Writes data to a disk file from an array.

Writes an entire huge array to disk.

Writes data to a random disk file.

Writes data to a random disk file where the
source data is either a fixed-length string or a
TYPE variable.

Same as FPutRT, except FPutRTA accepts a
segmented for saving array data.

Writes data to a disk file from either a
fixed-length string or TYPE variable.

Positions the DOS file pointer for a file opened
with FOpen.

Creates a new date and time for a specified file.

Returns the setting of a file's attribute byte.

Returns the name of an open file, given the DOS
handle.

Deletes a specified file.

Returns the number of lines of text in a specified
file.

Locks all or a portion of a network file.

Renames a file.

Loads a BSaved or QBSaved file into memory
much like QuickBASIC's BLoad.

Saves an array of data to disk.

Crescent Software, Inc. 10-15

I

I

Chapter 10 QuickPak Professional

FILE MANAGEMENT (Cont'd)

NAME PURPOSE

ReadFile

ReadFilel

ReadFileT

ReadFileX

ReadSect

ScanFile&

SearchPath

SetAttr

Share There

SplitName

Unique$

UnLockFile

Valid

10-16

Obtains a list of file names from disk and loads
them into a conventional (not fixed-length) string
array.

Obtains a list of file names, sizes, dates and times
from disk, formats them and loads them into a
conventional string array.

Obtains a list of file names from disk and loads
them into a fixed-length string array.

Obtains a list of file names, sizes, dates and times
from disk, formats them and loads them into
separate components of a TYPE array.

Reads the contents of any disk sector into a string.

Scans a file for a particular string.

Accepts the name of any executable file and
returns its fully qualified name by searching the
DOS path.

Sets the attribute byte for a specified file.

Reports if SHARE is installed in the host PC.

Parses out the components in a file name and
returns the drive letter, path name, file name and
extension as separate items.

Returns a file name that does not already exist on
the default drive in a specified directory.

Unlocks all or a portion of a network file.

Examines a string to see if it could be a valid
DOS file name.

Crescent Software, Inc.

QuickPak Professional Chapter 10

FINANCIAL FUNCTIONS

1. Sinking Fund Annutites:

NAME

QPFV#

QPFVN#

QPFVP#

2. Annuity Due:

NAME

QPFVD#

QPFVND#

QPFVPD#

PURPOSE

Calculates the future value of an annuity (sinking
fund).

Calculates the term (number of payments) of a
sinking fund.

Calculates the payment amount of a sinking fund.

PURPOSE

Calculates the future value of an annuity due.

Calculates the term (number of payments) of an
annuity due/FV.

Calculates the payment amount of an annuity
due/FV.

3 . Ordinary Annuity:

NAME

QPPMT#

QPPV#

QPPVN#

PURPOSE

Calculates loan payment (ordinary annuity).

Calculates present value of an ordinary annuity.

Calculates the term (number of payments) of an
ordinary annuity.

Crescent Software, Inc. 10-17

I

I

Chapter 10 QuickPak Professional

FINANCIAL FUNCTIONS (Cont'd)

4. Annuity due relationships:

NAME

QPPMTD#

QPPVD#

QPPVND#

PURPOSE

Calculates lease payments (annuity due).

Calculates the present value of an annuity due.

Calculates the term (number of payments) of an
annuity due.

5. Other compound interest relationships:

NAME

QPCINT#

QPCTERM#

QPIRR#

QPNPV#

QPRATE#

6. Depreciation:

NAME

QPDDB#

QPSLN#

QPSYD#

10-18

PURPOSE

Finds the future value of a savings account
drawing compound interest.

Determines the number of compounding periods
it will take an investment to grow to a
pre-determined value.

Calculates the internal rate of return.

Calculates the net present value of future cash
flows.

Obtains the periodic interest rate required for an
investment to grow to a pre-determined value in a
specified time.

PURPOSE

Calculates double declining balance depreciation.

Calculates straight line depreciation.

Calculates sum-of-years-digits depreciation.

Crescent Software, Inc.

QuickPak Professional

KEYBOARD

NAME

AltKey

CapsLock

CapsOff

CapsOn

ClearBuf

CtrlKey

CapNum

InStat

Keyboard

KeyDown

MGetKey

NumLock

NumOff

NumOn

Chapter JO

PURPOSE

Reports if the Alt key is currently depressed.

Reports if the Caps Lock key is currently
depressed.

Turns off the Caps Lock key status.

Turns on the Caps Lock key status.

Clears the keyboard buffer of any pending
keystrokes.

Reports if the Ctrl key is currently depressed.

Displays the current setting of the Caps Lock and
NumLock keys.

Reports the number of characters that are
currently pending in the keyboard buffer without
removing them.

Provides a continuous display of the current Caps
Lock and NumLock status, without having to
loop repeatedly to obtain the information.

Reports if any keys are currently depressed.

Clears the keyboard buffer of any pending keys,
and then waits until either a key or mouse button
is pressed.

Reports if the NumLock key is currently
depressed.

Turns off the NumLock key status.

Turns on the NumLock key status.

Crescent Software, Inc. 10-19

I

I

QuickPak Professional

KEYBOARD (Cont'd)

NAME

PeekBuf

RptKey

ScrlLock

ShiftKey

StuftBuf

WaitKey

WaitScan

10-20

QuickPak Professional Routines

PURPOSE

Returns what key if any is currently pending in
the keyboard buffer without actually removing it.

Works much like BASIC'S INKEY$; however, it
returns the number of times an Alt, Ctrl, or
shifted key has been pressed.

Reports if the Scroll lock key is currently
depressed.

Reports if the Shift key is currently depressed.

Inserts a string into the keyboard buffer as if it
had been entered at the keyboard.

Clears the keyboard buffer of any pending
keystrokes, and then waits until a key is pressed.

Waits for any key to be pressed, and then returns
the scan code for that key.

Crescent Software, Inc.

QuickPak Professional

MENUS

NAME

AMenu

AmenuT

ASCII Chart

ASCIIPick

MASCIIPick

ColorPick

MColorPick

DirFile

Lts2Menu

Chapter JO

PURPOSE

A multi-column menu routine that accepts a list of
choices from a conventional (not fixed-length)
string array. Choices are made by moving the
cursor bar to the desired choice and pressing
Enter.

Same as AMenu, except it is intended for use
with fixed-length strings.

Displays a "scrollable" chart of ASCII characters
and their corresponding decimal and hexadecimal
values.

Presents a table of ASCII characters and waits
until one is selected.

Same as ASCIIPick, except it supports the mouse
for selection.

Presents a table of colors and their corresponding
values, and waits until one is selected.

Same as ColorPick, except it supports the mouse
for selection.

Provides a menu for selecting a file name from a
list of choices Choices are made by moving the
cursor bar to the desired choice and pressing
Enter.

A Lotus 123 "look alike" menu where a list of
choices is displayed horizontally on a single line,
along with a prompt for the current item. Choices
are made by either pressing the arrow keys to
highlight a choice, or by pressing a key that
corresponds to the first letter of the choice.

Crescent Software, Inc. 10-21

I

I

Chapter JO

MENUS (Cont'd)

NAME

LtsMenu

MAMenu

MAMenuT

MenuVert

MMenuV

PickList

PullDown

PullDnMS

VertMenu

VertMenuT

10-22

QuickPak Professional

PURPOSE

Same as Lts2Menu, except it does not display a
corresponding prompt.

Same as AMenu, except a mouse is supported for
menu selection.

Same as AMenuT, except a mouse is supported
for menu selection.

A vertical menu program that accepts a list of
choices from a conventional (not fixed-length)
string array. Choices are made by moving the
cursor bar to the desired choice and pressing
Enter.

Same as Menu Vert, except a mouse is supported
for menu selection.

A "front end" subprogram for VertMenu that
allows selecting multiple items from a single
menu.

A pull-down menu routine very similar to the
QuickBASIC 4.0 environment's pull-down menu
with full mouse support.

A pull-down menu routine very similar to the
QuickBASIC 4.5 environment's pull-down menu
with full mouse and Hotkey support.

A vertical menu program that accepts a list of
choices from a conventional (not fixed- length)
string array. Choices are made by moving the
cursor bar to the desired choice and pressing
Enter. VertMenu always saves the underlining
screen, and draws a box and an attractive shadow
around the menu.

Same as VertMenu, except for use with
fixed-length string arrays.

Crescent Software, Inc.

QuickPak Professional

MISCELLANEOUS

NAME

BCopy

BCopyT

Cale

Calendar

Compare

CompareT

DOSVer

Empty

EMS Manager

FileView

FudgeFactor&

GetCMOS

GetCPU

Chapter 10

PURPOSE

Copies a block of memory (up to 64K in size) to
a new location.

Copies one or more elements in a TYPE array to
another array, or to any location in memory.
BCopyT can be used to move any contiguous
block of memory, even if the number of bytes
exceeds 65536.

Provides a handy pop-up calculator that you can
add to your BASIC programs.

Provides a pop-up calendar that will display any
month of any year.

Compares any two blocks of memory, and reports
if they are the same.

Compares any two TYPE variables, and reports if
they are the same.

Returns the version of DOS that is presently
running on the host PC.

An empty procedure that does absolutely nothing,
for use when timing BASIC functions.

A collection of routines that allow you to store
and retrieve any type of data using expanded
memory.

A complete file browsing subroutine (assembler
version of View File).

Returns a long integer value that roughly
corresponds to the processing speed of a PC.

Shows how to acces the data in the CMOS.RAM
of an AT or compatible computer.

Returns an integer value that indicates the type of
CPU installed on the host PC.

Crescent Software, Inc. 10-23

I

I

Chapter JO QuickPak Professional

MISCELLANEOUS (Cont'd)

NAME PURPOSE

GetDS

GetEquip

LoadExec

LockUp

MathChip

Peekl

Peek2

Pokel

Poke2

QPCli &QPSti

ReBoot

SetCmd

Soundex$

Spell Number$

10-24

Returns BASIC's current internal data segment.

Returns several items from the equipment list
kept in the low-memory area of a PC.

Executes another program and retrieves its exit
code (the DOS error level).

Causes an immediate system freeze that can only
be cleared by turning off the PC's power switch.

Reports if an 80x87 math co-processor chip is
installed in the host PC.

Reads one byte from a specified segment and
address and returns its value.

Reads a word (two bytes) at a specified segment
and address, and returns its value.

Writes a new byte to a specified segment and
address.

Writes a new word (two bytes) to a specified
segment and address.

Disables and enables interrupts respectively.

Causes the host PC to perform a "warm" boot, as
if the Ctrl-Alt-Del keys had been pressed.

Allows you to set the COMMAND$ that will be
read by a program that is subsequently RUN or
CHAINed to.

Returns a "sounds like" code that can be used to
compare if two strings sound alike.

Accepts a number in the form of a string such as
"12345", and returns a spelled-out English
equivalent in the form of "Twelve Thousand
Three Hundred Forty Five".

Crescent Software, Inc.

QuickPak Professional Chapter JO

MISCELLANEOUS (Cont'd)

NAME

Spread

ViewFile

XMS Manager

PURPOSE

A complete spreadsheet subprogram that may be
called as a "pop-up" from within a BASIC
program.

A complete pop-up file browsing subprogram in
BASIC.

A collection of routines that allow you to store
and retrieve any type of data using extended
memory.

Crescent Software, Inc. 10-25

I

Chapter 10

MOUSE

NAME

ButtonPress

GetCursor

GetCursorT

Graf Cursor

HideCursor

InitMouse

MBufSize

MGetState

Motion

Mouse

MouseRange

MouseRangeG

10-26

QuickPak Professional

PURPOSE

Returns the number of times a specified mouse
button has been pressed since the last time it was
called. It also returns the X/Y coordinates where
the mouse cursor was located when that button
was last pressed.

Reports the current pixel X/Y location of the
mouse cursor and which mouse buttons are
currently depressed.

Reports the current row/column X/Y location of
the mouse cursor and which mouse buttons are
currently depressed.

Allows defining the shape of the mouse cursor.

Turns the mouse cursor off.

Used both to determine if a mouse is present in
the host PC, and to reset the mouse driver
software to its default values.

Returns the length of the buffer needed to save
the current mouse state.

Saves the current mouse state into a string.

Allows a program to establish the sensitivity of
the mouse cursor motion.

Provides access to all of the mouse services.

Returns a range number that tells where the
mouse cursor is located, based on an array of
screen coordinates in text mode.

Same as MouseRange but for graphics modes.

Crescent Software, Inc.

QuickPak Professional

MOUSE (Cont'd)

NAME

MouseTrap

MSetState

SetCursor

Show Cursor

TextCursor

Chapter 10

PURPOSE

Establishes the allowable range of movement for
the mouse cursor.

Restores a saved mouse state to the mouse driver.

Establishes a new location for the mouse cursor.

Turns the mouse cursor on.

Initializes the mouse cursor in text mode and
defines its color.

Crescent Software, Inc. 10-27

I

I

Chapter 10 QuickPak Professional

NUMERIC FUNCTIONS AND SUBS

NAME

AddUSI

Bin2Num

C2F!

Eval#

Evaluate#

Factorial#

F2C!

Maxlnt%

MaxLong&

Minlnt%

MinLong&

Num2Bin$

10-28

PURPOSE

Adds two integers on an unsigned basis, without
creating an overflow error if the total exceeds
32767.

Accepts a binary number in the form of a string,
and returns an equivalent value.

Converts a celsius temperature to its Fahrenheit
equivalent.

Returns the value of a string similar to BASIC's
VAL function, but without regard to dollar signs,
commas, or any other punctuation.

A full-featured expression evaluator, it accepts a
formula in an incoming string, and returns a
double precision result.

Provides an extremely fast way to obtain a
factorial value.

Converts a Fahrenheit temperature to its celcius
equivalent.

Compares two integer variables, and returns the
value of the higher one.

Compares two long integer variables, and returns
the value of the higher one.

Compares two integer variables, and returns the
value of the lower one.

Compares two long integer variables, and returns
the value of the lower one.

Converts a number into an equivalent binary
string with a fixed length of 16 digits.

Crescent Software, Inc.

QuickPak Professional Chapter 10

NUMERIC FUNCTIONS AND SUBS (Cont'd)

NAME PURPOSE

Num2Bin2$

Pad$

Power&

Power2&

QPACOS#

QPASIN#

QPATAN2#

QPLOGlO#

QPSolver

QPRound$

QPUSI

Rand!

ShiftIL

Same as Num2Bin$, except Num2Bin2$ returns
only as many digits as required to represent the
number.

Adds leading zeros to a number, padding it to a
specified number of digits.

Raises any number to a power specified without
using floating point math.

Raises 2 to a power specified without using
floating point math.

Returns the Arc cosine of X.

Returns the Arc sine of X.

Returns the 4-quadrant arc tangent of Y IX.

Returns log of X base 10.

A complete environment for entering and editing
variables and expressions that are evaluated using
the QuickPak Professional Evaluate function.

Rounds a number to a specified number of
decimal places.

(QuickPak Unsigned Integer) Returns the
low-word portion of a long integer, and it is
useful for those situations where you are using a
long integer to store integer information whose
value may exceed 32767.

Returns a random number between the specified
upper and lower bounds.

Shifts the bits in an integer variable a specified
number of positions to the left.

Crescent Software, Inc. 10-29

I

I

Chapter 10 QuickPak Professional

NUMERIC FUNCTIONS AND SUBS (Cont'd)

NAME PURPOSE

ShiftIR

ShiftLL

ShiftLR

Signed

Times2

Traplnt

UnSigned&

VLAdd

VLDiv

VLMul

VLPack

VLSub

10-30

Shifts the bits in an integer variable a specified
number of positions to the right.

Shifts the bits in a long integer variable a
specified number of positions to the left.

Shifts the bits in a long integer variable a
specified number of positions to the right.

Takes an incoming unsigned integer value, and
returns it in a signed form.

Multiplies an integer variable times 2, without
causing an overflow if the value exceeds 32,767.

Constrains an incoming value to within a
specified upper and lower limit.

Takes an incoming signed integer value, and
returns it in unsigned form.

Adds two "very long" integers and returns the
result in another one.

Divides two "very long" integers, and returns the
result and remainder in two other ones.

Multiplies two "very long" integers, and returns
the result in another one.

Accepts a "very long" integer value in the form
of a string, and returns it packed to the correct
format in a double precision "alias" variable.

Subtracts two "very long" integers, and returns
the result in another one.

Crescent Software, Inc.

QuickPak Professional Chapter JO

NUMERIC FUNCTIONS AND SUBS (Cont'd)

NAME

VLUnpack

PURPOSE

Accepts a very long integer value in the form of a
double precision "alias" variable, and returns it in
string form suitable for being displayed or printed.

Crescent Software, Inc. 10-31

I

I

Chapter 10

PRINTER

NAME

BLPrint

Extended

Printer Ready

PRNReady

PrtSc

PrtScO

PSwap

ScrnDump

10-32

QuickPak Professional

PURPOSE

Similar to BASIC's LPRINT, except BLPrint
returns an error code should the printer be off
line, or becomes unavailable during printing.

Downloads a replacement font file to an Epson
printer, enabling it to print the entire IBM
extended character set.

Similar to the PRNReady function, it avoids the
excessive delays that can occur when a printer is
turned on, but is off-line.

Reports whether a specified printer is available
and on-line.

Sends a snapshot of the screen to a printer, as if
the PrtSc key was pressed.

Same as PrtSc, except PrtScO prints from text
screen zero only.

Exchanges LPTl and LPT2 each time it is called.

Takes a snapshot from a graphics screen
regardless of mode, and sends it to an HP
LaserJet (or compatible) or 9-pin Epson dot
matrix (or compatible) graphics printer (Does not
print SCREEN 13).

Crescent Software, Inc.

QuickPak Professional Chapter JO

SA VE/LOAD/DISPLAY SCREENS

NAME

ArraySize

EGABLoad

EGABSave

EGAMem

MPRestore

MScrnRest

MScrnSave

ScrnRest

ScrnRestO

ScrnSave

ScrnSaveO

Wipes

PURPOSE

Returns the number of elements in an integer
array required to hold a portion of the display
screen.

Loads an EGA or VGA graphics image from a
specified disk file.

Saves an EGA or VGA graphics screen to a
specified disk file.

Reports the amount of memory available on an
EGA display adapter.

Lets you display any rectangular portion from a
screen that has been saved to an array using
ScrnSave or ScrnSaveO.

Same as ScrnRest, except MScrnRest turns off
the mouse cursor while it is working.

Same as ScrnSave, except MScrnSave turns off
the mouse cursor while it is working.

Restores a screen previously saved with ScrnSave
or ScrnSaveO.

Same as ScrnRest, except ScrnSaveO restores to
text page zero only.

Saves all or part of a text screen into an integer
array.

Same as ScrnSave, except ScrnSaveO saves from
text page zero only.

Allows you to display screens in a variety of
interesting ways.

Crescent Software, Inc. 10-33

I

Chapter JO

SOUND

NAME

Chime

QPPlay

QPSound

10-34

QuickPak Professional

PURPOSE

Provides five different types of beep tones, and
five attention-getting trill sounds.

Replaces BASIC's PLAY statement, while
greatly reducing the amount of code that is added
to your programs (about 700 bytes compared to
14.SK!).

Similar to BASIC's SOUND statement, but with
a substantial reduction in code size.

Crescent Software, Inc.

QuickPak Professional Chapter JO

STATISTICAL FUNCTIONS

NAME

QPAVG#

QPCOUNT

QPMAX#

QPMIN#

QPSTD#

QPSUM#

QPVAR#

PURPOSE

Returns the average of the values in an array.

Returns the number of entries in an array.

Returns the highest value in a list.

Returns the lowest value in an array.

Returns the population deviation of items in a list.

Returns the sum of all values in an array.

Returns the population variance of values in a list.

Crescent Software, Inc. 10-35

I

I

Chapter 10 QuickPak Professional

STRING MANIPULATION

NAME

ASCII

Blanks

Compact$

Delimit

Encrypt

Encrypt2

Expand Tab$

Far2Str$

FUsing$

InCount

10-36

PURPOSE

Returns the ASCII value for the first character in
a string, but it will not cause an "Illegal Function
Call" error if the string is null.

Reports the number of leading blanks in a
specified string. Both CHR$(32) and CHR$(0)
null characters are recognized.

Compresses a string by removing all embedded
blanks.

Counts the number of delimiters in a string, by
matching against a second string that contains a
table of valid delimiters.

Encrypts a specified string using a password that
you provide.

Encrypts a specified string using a password that
you provide. Somewhat more secure than the
original Encrypt.

Accepts an incoming text string that contains
embedded CHR$(9) Tab characters, and replaces
them with the appropriate number of CHR$(32)
spaces.

Retrieves an ASCIIZ string from anywhere in
memory, and returns it as a conventional BASIC
string.

Accepts an incoming number and image string,
and returns it formatted, much like BASIC's
PRINT USING.

Reports how many times one string occurs within
another, and the search string may contain any
number of wild cards.

Crescent Software, Inc.

QuickPak Professional Chapter JO

STRING MANIPULATION (Cont'd)

NAME

InCount2

InCountTbl

InstrTbl

InstrTblB

InstrTbl2

InstrTblB2

LastFirst$

LastLast$

LowASCII

Lower

LowerTbl

PURPOSE

Same as InCount, but searching is case
insensitive.

Returns the number of characters in a string that
match any of the characters in a table.

Searches a string for the first occurrence of any
characters that are specified in a table string.

Same as InstrTbl, except searching is performed
backwards from the end of the string.

Same as InstrTbl, except InstrTbl2 is not case
sensitive.

Same as InstrTbl2, except InstrTbl2 is not case
sensitive and searching is performed backwards
from the end of the string.

Reverses the position of a first and last name in a
string such that the last name comes before the
first.

Reverses the position of a first and last name in a
string such that the last name comes after the first.

Strips the "high bit" from all of the characters in
a specified string.

Converts all characters in a specified string to
lower case very quickly.

Converts all characters in a specified string to
lower case, and it also looks in a supplied table to
determine how to handle foreign characters.

Crescent Software, Inc. 10-37

I

I

Chapter 10 QuickPak Professional

STRING MANIPULATION (Cont'd)

NAME PURPOSE

MidChar

MidCharS

Notlnstr

Null

Parse

ParseStr

ParseString

Proper Name

Qinstr

Qinstr2

QinstrB

QinstrB2

10-38

Returns the ASCII value for a single character
within a string.

Inserts a single character into a string much faster
then using the MID$ statement.

Returns the offset of the first character in a string
that does not match any of the characters in
another.

Reports if a specified string is either null, or is
filled with blank or CHR$(0) characters.

Extracts individual components from a string, and
places each into a separate elements of a string
array.

Accepts an incoming string that contains numbers
separated by commas, and returns a new string
consisting of equivalent ASCII characters.

Accepts a string containing delimited information
and returns portions of the string each time it is
invoked.

Converts the first letter of each word in a string
to upper case.

Serves the same purpose as BASIC's INSTR
function, except it accepts any number of wild
cards.

Same as Qinstr, except Qinstr2 is case-insensitive.

Same as Qinstr, except it searches the source
string backwards.

Same as Qinstr, except it searches the source
string backwards, and is case-insensitive.

Crescent Software, Inc.

QuickPak Professional Chapter JO

STRING MANIPULATION (Cont'd)

NAME

QinstrH

QPHex$

QPLeft$

QPMid$

QPRight$

QPLen

QPSadd

QPSegAdr&

QPSSeg

QPStrI$

QPStrL$

QPTrim$

QPLTrim$

QPRTrim$

PURPOSE

Locates a string of text anywhere in the PC's
normal 1 MB of address space.

Faster version of BASIC's HEX$ function that
also returns a string padded to a specified number
of digits.

Smaller code version of BASIC's LEFT$
function.

Smaller code version of Basie's MID$ function.

Smaller code version of BASIC's RIGHT$
function.

Smaller code version of BASIC's LEN function.

Smaller code version of BASIC's SADD function.

Returns the segmented address of a conventional
(not fixed-length) string as a long integer exactly
like BASIC 7's SSEGADD However, the same
routine is provided in both the QB and BC7
versions of the QuickPak Pro library.

Returns the segment address of a Far String (BC7
only).

Smaller code version of BASIC's STR$0
function (Use with integers).

Smaller code version of BASIC's STR$0
function (Use with long integers).

Removes both trailing and leading spaces and
CHR$(0) characters from a string.

Smaller code version of BASIC's LTRIM$
function, also trims CHR$(0) characters.

Smaller code version of BASIC's RTRIM$
function, also trims CHR$(0) characters.

Crescent Software, Inc. 10-39

I

I

Chapter 10 QuickPak Professional

STRING MANIPULATION (Cont'd)

NAME PURPOSE -----------------
QPV all% Smaller code version of BASIC's VAL function

that returns an integer result.

QPValL& Smaller code version of BASIC's VAL function
that returns a long integer result.

RemCtrl . Scans through a given string and replaces any
control characters with a specified new character.

ReplaceChar Replaces all occurrences of a specified character
with a different character within a variable length
string.

ReplaceChar2 Sarne as ReplaceChar, except it is case-insensitive.

ReplaceCharT Sarne as ReplaceChar, except it can be used with
Type variables, fixed length strings, or any block
of memory up to 64K long.

ReplaceCharT2 Sarne as ReplaceCharT except it ignores
capitalization when searching and it replaces
characters using upper case versions.

ReplaceString Replaces all occurrences of a specified string with
a different string.

Sequence Increments the characters in a string.

ShrinkTab$ Reduces the length of a string by replacing groups
of blank spaces with CHR$(9) tab characters.

ReplaceTbl Replaces all occurrences of one character with
any other character using a lookup table.

StringMgr

Translate

10-40

A collection of routines that allows you to store
entire string arrays in far memory.

Replaces an occurrence of extended "box
drawing" characters with an appropriate
equivalent ASCII character.

Crescent Software, Inc.

QuickPak Professional Chapter JO

STRING MANIPULATION (Cont'd)

NAME PURPOSE

UnParseStr$

Upper

UpperTbl

WordWrap

Accepts an incoming string that contains ASCII
characters, and returns the equivalent numeric
values separated by commas.

Converts all alphabetic characters in a string to
upper case very quickly.

Capitalizes all of the characters in a string, and it
also looks in a supplied table to determine how to
handle foreign characters.

Accepts a single long string and prints it on the
screen with word wrap.

Crescent Software, Inc. 10-41

I

I

Chapter 10 QuickPak Professional

TEXT/DATA ENTRY

NAME

Datein

Dialog

Editor

Maskln

MEditor

Numin

QEdit

QEdit7

QEditS

Scrollln

Textln

10-42

PURPOSE

Provides the ability to enter or edit date fields.
The cursor automatically skips over the
separating slashes, and Alt-C will clear the field.

Generates Dialog boxes similar to QuickBASIC's
based on the contents of a string array passed to it.

Text input routine that allows editing an existing
string. Input may be limited to numbers or caps
only, and both the normal and edit colors are
specified.

A sophisticated "Mask Input" routine which
allows you to specify the type of characters to be
entered.

Same as Editor, except it includes full mouse
support.

Provides the ability to enter or edit a numeric
field. The cursor automatically skips over the
decimal point, and Alt-C will clear the field.

A complete text editor subprogram that may be
called as a "pop-up" from within a BASIC
program.

Same as QEdit, but optimized for PDS 7, works
with QuickBASIC as well.

A stripped-down version of QEdit without block
operations or a window "frame".

Single-line text-input routine that allows editing
or entering a string of any length.

A BASIC text input routine similar to Editor.

Crescent Software, Inc.

QuickPak Professional Chapter 10

TEXT/DATA ENTRY (Cont'd)

NAME PURPOSE

YesNo

YesNoB

Provides a quick way to accept a Yes or No input.

BASIC version of Y esNo.

Crescent Software, Inc. 10-43

I

I

Chapter JO QuickPak Professional

UTILITY PROGRAMS

NAME

Demo123

MakeQLB

ReadDirs

QuickDOS

10-44

PURPOSE

An example program that shows how to read and
write Lotus 123 files.

Makes a Quick Library subset from a library or
libraries.

Demonstration utility that searches through all
levels of sub-directories for matching files.

Menu-driven DOS utility - copies, deletes,
moves, sorts files.

Crescent Software, Inc.

QuickPak Professional Chapter JO

VIDEO (Text Mode Only Unless
Otherwise Specified)

NAME

APrint

APrint0

APrintT

APrintT0

Box

Box0

BlinkOff

BlinkOn

BPrint

ClearEOL

PURPOSE

Prints any portion of a conventional (not
fixed-length) string array, and contains the
display within a specified portion of the screen.

Same as APrint, except APrint0 displays on text
page zero only for less code.

Prints any portion of a fixed-length string array,
and contains the display within a specified portion
of the screen.

Same as APrintT, except APrintT0 displays on
text page zero only.

Draws a box frame on the screen.

Same as Box, except Box0 displays on text page
zero only.

Turns the blink attribute off to allow high
intensity background colors on EGA and VGA
only.

Turns the blink attribute on to allow flashing text
on EGA and VGA only.

Prints either a conventional or fixed-length string
at the current cursor position through DOS.

Erases the current screen line starting at the
current cursor position.

Crescent Software, Inc. 10-45

I

I

Chapter JO

VIDEO (Cont'd)

NAME

ClearScr

ClearScr0

Colors

CsrSize

FillScm

FillScm0

GetColor

GetVMode

HCopy

HercThere

MakeMono

10-46

QuickPak Professional

PURPOSE

Clears all or a portion of the screen to a specified
color.

Same as ClearScr, except ClearScr0 displays on
text page zero only.

Displays a chart showing all possible color
combinations.

Reports the top and bottom scan lines that
describe the current cursor size. Also determines
if the cursor is on or off.

Fills any rectangular portion of the screen with a
specified character.

Same as FillScrn, except FillScrn0 displays on
text page zero only.

Returns BASIC's currently active foreground and
background colors.

Reports the current video mode, the currently
active display page, the page size, and the
number of rows and columns.

Similar to BASIC's PCOPY command, except it
is designed to work with a Hercules or
compatible display adapter in text mode.

Reports if QBHERC.COM or MSHERC.COM
Hercules graphic support has been loaded into
memory.

Converts the colors on a text screen held in an
integer array to those suitable for display on a
monochrome monitor.

Crescent Software, Inc.

QuickPak Professional

VIDEO (Cont'd)

NAME

MakeMon2

Marquee

Monitor

MPaintBox

MQPrint

MsgBox

OneColor

PaintBox

PaintBox0

PUsing

QPrint

QPrintO

Chapter JO

PURPOSE

Similar to MakeMono, except MakeMon2 allows
you to specify one of four different color
conversions.

Provides a cute way to display a scrolling
message like a movie marquee.

Reports the type of monitor display adapter
currently active.

Same as PaintBox, except MPaintBox always
turns off the mouse cursor.

Same as QPrint, except MQPrint always turns off
the mouse cursor before printing.

Provides a quick and attractive way to display a
message with word wrap automatically centered
on the screen.

Accepts foreground and background color values,
and returns them combined in a single byte for
use with QuickPak Professional video routines.

Paints any rectangular area of the screen without
disturbing the text that is already present.

Same as PaintBox, except PaintBox0 displays on
text page zero only.

Smaller code version of BASIC's PRINT USING
command.

Displays a string very quickly at the current
cursor location.

Same as QPrint, except QprintO displays on text
page zero only.

Crescent Software, Inc. 10-47

I

I

Chapter 10

VIDEO (Cont'd)

NAME

QPrintAny

QPrintRC

QPWindow

ReadScrn

ReadScrnO

ScrollD

ScrollL

ScrollR

ScrollU

SetMonSeg

SplitColor

Window Mgr

10-48

QuickPak Professional

PURPOSE

Provides a simple way for a BASIC program to
utilize two monitors at the same time.

Displays a string very quickly at a specified row
and column.

Provides a complete text windowing manager that
lets you establish a windowed viewport on the
screen and print text in that window, scrolling as
necessary automatically.

Reads characters from the display screen, and
stores them in a specified string variable.

Same as ReadScrn, except ReadScrnO reads from
text page zero only.

Scrolls any portion of the display screen down a
specified number of lines.

Scrolls any portion of the display screen left a
specified number of columns.

Scrolls any portion of the display screen right a
specified number of columns.

Scrolls any portion of the display screen up a
specified number of lines.

Allows QuickPak Professional video routines to
write to any arbitrary segment.

Accepts a single byte that contains combined
foreground and background colors, and returns
the separate components.

A complete window manager that frees the
programmer from having to dimension and erase
arrays, and keep track of windows as they are
opened and closed.

Crescent Software, Inc.

Index

I

QuickPak Professional

A
Action, 1-21, 1-22, 1-53, 1-54, 1-64
Addlnt subroutine, 2-1
AddUSI function, 7-1
AltKey function, 6-1
AMenu subroutine, 5-1

also see Menus for a listing of
additional menu routines

AMenuT subroutine, 5-4
also see Menus for a listing of

additional menu routines
APrint subroutine, 9-1

also see PRINT for a listing of
additional print routines

APrint0 subroutine, 9-4
also see PRINT for a listing of

additional print routines
APrintT subroutine, 9-5

also see PRINT for a listing of
additional print routines

APrintT0 subroutine, 9-7
also see PRINT for a listing of

additional print routines
Array2EMS 7-25, 7-30

subroutine, 7-30
ArraySize function, 9-9

also see ScmSave, ScmSaveO,
MScmSave

AS ANY, 7-17, 7-31, 7-34
ASC, see ASCII
ASCII function, 8-1
ASCII Chart subprogram, 7-2
ASCIIPick subroutine, 5-5

also see MASCIIPick
ASCIIZ string, 8-7
ATN,see QPATAN2

B
BASCOM!, 1-52
BASIC support .QLB Libraries, 1-11
BASIC7, see PDS
Batch File, 1-18
BC, 1-46
BCOM, 1-46
BCopy subroutine, 7-3

also see BCopyT

Crescent Software, Inc.

Index

BCopyT subroutine, 7-5
also see BCopy

BEEP, see Chime
Bin2Num function, 4-1

also see Num2Bin, Num2Bin2
Bit Arrays, 1-55
Blanks function, 8-3
BlinkOffsubroutine, 9-11
BlinkOn subroutine, 9-11
BLOAD, 1-106, 3-25, 3-27, 3-80,

9-63
also see FG etAH, QB Load

BLPrint subroutine, 7-7
Box subroutine, 9-12

also see Box0
Box0 subroutine, 9-13

also see Box
BPrint subroutine, 9-14

also see PRINT for a listing of
additional print routines

BRUN, 1-46
BSA VE, 1-95, 1-98, 1-100

also see FPutA, FPutAH,
QBSave

BUFFERS=, 3-22
BUILDLIB.EXE, 1-45
ButtonPress subroutine, 6-2

also see GetCursor, GetCursorT,
WaitUp

BYVAL, 1-38, 1-100, 1-101, 7-80

C
C2F, function 4-2

also see F2C
Cale subprogram, 7-9
Calendar subprogram, 7-10
CALL, 1-25, 1-31, 1-90
CapNum subprogram, 5-7
CapsLock function, 6-3
CapsOff subroutine, 6-4
CapsOn subroutine, 6-4
CDir subroutine, 3-1
CHDIR, see CDir
Chime subroutine, 7-11
ClearBuf subroutine, 6-6
ClearEOL subroutine, 9-15

1 I

Index

ClearScr subroutine, 9-16
also see ClearScr0, FillScm,

Fi11Scm0
ClearScr0 subroutine, 9-17

also see ClearScr, FillScm,
Fi11Scm0

ClipFile subroutine, 3-2
Clock subroutine, 7-12

also see Clock24
Clock24 subroutine, 7-12

also see Clock
CLS, see ClearScr0, ClearScr,

FillScm, Fil1Scm0
Cnf7-60

defined, 1-22
passing, 1-23 to 1-25

COLOR, see Colors
also see OneColor

ColorPick subroutine, 5-8
also see MColorPick

Colors subprogram, 9-18
Compact function, 8-4
Compare function, 7-14

also see CompareT
CompareT function, 7-16

also see Compare
COMMAND$, see SetCommand

parsing, 4-3, 4-11, 4-12
Compile, 1-6, 1-47
CONFIG.SYS, 3-22
CsrSize subroutine, 9-20
CtrlKey function, 6-6

D
DATA.ASM, 1-106
DATA.BAS, 1-106
Date2Day function, 7-18

also see Num2Day
Date2Num function, 7-19

also see Num2Date
Dateln subprogram, 5-10
DayName function, 7-21

also see MonthName
DCount 3-66, 3-76

function, 3-4
Declare.BAS, 1-16, 1-32

2

QuickPak Professional

DEF SEG, 1-95, 7-68, 7-69, 7-70,
7-71

DefCnf
description, 1-77
passing, 1-22, 1-23, 1-24

DEFINT A-Z, 1-15, 1-50
DeleteStr subroutine, 2-2

also see DeleteT
DeleteT subroutine, 2-3

also see DeleteStr
Delimit function, 4-3
Demo123 example program, 7-22
Dialog 6-16

subprogram, 5-12
also see MsgBox

DIM, 1-93
DIM SHARED, 1-86
DimBits subroutine, 2-4
DirFile subroutine, 5-18
DirTree subprogram, 7-23
Disklnfo subroutine, 3-5
DiskRoom function, 3-6
DiskSize function, 3-7
DOS SUBST, 3-64, 3-69
DOSError, 1-26, 1-28, 1-51

function, 3-8
DOSVer function, 3-9
DYNAMIC

E

arrays, 1-93
metacommand, 1-94

EDate2Num function, 7-24
also see ENum2Date

EDITHELP.ASM 1-106
Editor subroutine, 5-20

also see MEditor, QEdit,
QEdit7, QEditS, Scrollln, Textln

EGABLoad subprogram, 9-21
also see EGABSave, QBLoad,

QBSave
EG AB Save, 1-97

also see EGABLoad, QBLoad,
QBSave

EGAMem function, 9-23
Empty subroutine, 7-35

Crescent Software, Inc.

QuickPak Professional Index

EMS Manager subroutines, 7-25 Extended subroutine, 7-40
EMS2Array, 7-25, 7-26

subroutine 7-31 F
EMSAllocMem subroutine, 7-34 F2C function, 4-6
EMSError 7-26 also see C2F

function, 7-28 Factorial function, 7-41
EMSError Codes, 7-27 Far2Str function, 8-7
EMSGetlEl subroutine, 7-32 FastLoad subprogram, 3-14
EMSGetPFSeg function, 7-28 FastLoadlnt function, 3-14
EMSLoaded 7-25 FastSave subprogram, 3-14

function, 7-28 FClose 1-30
EMSNumPages function, 7-28 subroutine, 3-16
EMSPageCount function, 7-29 FCopy subroutine, 3-17
EMSPagesFree function 7-29 FCount, 3-89
EMSRelMem 7-25, 7-26 function 3-19

subroutine, 7-33 FCreate, 1-27, 1-30
EMSSetlEl subroutine, 7-34 subroutine, 3-20
EMSSetError subroutine, 7-33 FEof function, 3-21
EMSSetPage subroutine, 7-33 FFlush subroutine, 3-22
EMSVersion function, 7-29 FGet, 1-29
Encrypt subroutine, 3-24

subroutine, 8-5 FGetA
also see FileCrypt subroutine, 3-25

Encrypt2 FGetAH
subroutine, 8-5 subroutine, 3-27
also see FileCrypt FGetR, 1-29

ENum2Date function, 7-36 subroutine, 3-28
also see EDate2Num FGetRT, 1-29, 1-30

Error Codes, 3-113 subroutine, 3-29
EMS routines, 7-27 FGetRTA, 1-29
returned by WhichError, 3-111 subroutine 3-29

ErrorLevel FGetT, subroutine 3-30
see SetLevel FileComp function, 3-31

ErrorMsg, 1-28 FileCopy subprogram, 3-32
function, 3-10 FileCrypt, 8-5

Eval function, 4-4 subprogram, 3-34
also see Evaluate, QPSolver also see Encrypt, Encrypt2

Evaluate function, 7-37 Fiielnfo subroutine, 3-36
also see Eval, QPSolver FileSize function, 3-38

EX, LINK.EXE switch, 1-42 FiieSort subprogram, 3-39
ExeName function, 3-11 also see listings under Indexed
Exist 1-28, 1-29, 1-30 Sorts, Sorts

function 3-13 FileView subroutine, 7-42
ExpandTab function, 4-5 also see ViewFile

I also see ShrinkTab Fill2,4,8 subroutine, 2-5
Exponentiation see Power, Power2 FillScm subroutine, 9-24

Crescent Software, Inc. 3

Index

also see ClearScr, ClearScr0,
FillScm0

Fi11Scm0 subroutine, 9-25
also see ClearScr, ClearScr0,
FillScm

Find 2-6 subroutine, 2-6
Find2 subroutine, 2-6
FindB subroutine, 2-8
FindB2 subroutine, 2-8
FindExact subroutine, 2-9
FindLast function, 2-13
FindLastSM function, 7-87
FindT subroutine, 2-10
FindT2 subroutine, 2-10
FindTB subroutine, 2-12
FindTB2 subroutine, 2-12
FLinput, 1-28, 1-29

function, 3-40
FLoc function, 3-41
FLof function, 3-42
FNSPREAD.BAS

description, 1-68
FOpen, 1-26

subprogram, 3-43
FOpenAll, 1-26

subprogram, 3-44
FOpenS, 1-26

subprogram, 3-43
FormatDiskette function, 3-45
Formatting Text, see FUsing,

PUsing
FPut 1-29

subroutine, 3-48
FPutA subroutine, 3-49
FPutAH subroutine, 3-50
FPutR, 1-29

subroutine, 3-51
FPutRT, 1-29, 1-30

subroutine, 3-52
FPutRTA, 1-29

subroutine, 3-52
FPutT subroutine, 3-53
FRE, 1-94
FSeek, 1-30

subroutine, 3-54
FStamp subroutine, 3-55

4

QuickPak Professional

FudgeFactor, 7-66
function, 7-45

FullName function, 3-57
Functions 1-34, 1-35, 1-68 to 1-70,

1-85, 1-86, 1-87, 1-88, 1-91,
moving 1-68

FUsing function, 8-8
also see PUsing

G
GET

file 1/0, 1-29
also see FGet, FGetA, FGetAH,
FGetRT, FGetRTA, FGetT

GetlStr function, 7-89
GetlStr subroutine, 7-88
GetAttr function, 3-58
GetBit, 1-55

function, 2-14
GetCMOS subprogram, 7-46
GetColor subprogram, 9-26
GetCPU function, 7-47

also see MathChip
GetCursor subroutine, 6-7

also see ButtonPress,
GetCursorT, WaitUp

GetCursorT subroutine, 6-9
also see ButtonPress, GetCursor,
WaitUp

GetDir, 1-82
function, 3-60

GetDisketteType function, 3-61
GetDrive function, 3-62

also see LastDrive
GetDS function, 7-48
GetEquip subroutine, 7-49
GetNext function, 7-89
GetVMode, 1-95

subroutine, 9-27
GetVol function, 3-63

also see PutVol
GoodDrive function, 3-64
GOSUB, 1-90
GrafCursor subroutine, 6-10

Crescent Software, Inc.

QuickPak Professional

H

I

Handle, 1-27, 1-52
Handle2Name subroutine, 3-65
HCopy subroutine, 9-28
HercThere function, 9-29
HEX$, see QPHex
HideCursor subroutine, 6-11

also see ShowCursor

IMaxD,I,L,S,C function, 2-15
IMinD,I,L,S,C function, 2-16
InCount function, 8-10
InCount2 function, 8-10
InCountTbl function, 8-11
Indexed Sorts

explained, 1-73, 1-74
fixed-length string, ISortT,
ISortT2

string, ISortStr, ISortStr2
numeric, ISortD, ISortI,
ISortL, ISortS

also see listings under Sort
also see FileSort, KeySort

Initlnt, 1-74
subroutine, 2-17

InitMouse subroutine, 6-12
also see TextCursor

INKEY$, 6-38
also see PeekBuf, RptKey

INPUT, see Editor, Scrollin,
Textln

InsertStr subroutine, 2-18
InsertT subroutine, 2-19
InStat function, 6-13
INSTR, see InstrTbl,InstrTbl2,

InstrTblB, InstrTblB2, Qinstr,
Qinstr2, QinstrB, QinstrB2

InstrTbl function, 8-12
also see InstrTblB, InstrTblB2

InstrTbl2 function, 8-12
also see InstrTblB, InstrTblB2

InstrTblB function, 8-13
also see InstrTbl, InstrTbl2

InstrTblB2 function, 8-13
also see InstrTbl, InstrTbl2

Crescent Software, Inc.

Index

Integer, 1-50
!Sort, 1-73

also see listings under Indexed
Sorts

ISortD,I,L,S, C subroutines, 2-20
also see listings under Indexed
Sorts

ISortStr subroutine, 2-21
also see listings under Indexed
Sorts

ISortStr2 subroutine, 2-21
also see listings under Indexed
Sorts

ISortT subroutine, 2-22
also see listings under Indexed

Sorts
ISortT2 subroutine, 2-22

K

also see listings under Indexed
Sorts

KeyBoard subroutine, 6-14
KeyDown function, 6-16

also see WaitUp
KeySort subroutine, 2-24

also see listings under Indexed
Sorts, Sorts

KILL, see KillFile
KillDir subroutine, 3-66
KillFile subroutine, 3-68

L
LastDrive function, 3-69

also see GoodDrive
LastFirst function, 4-7

also see LastLast
LastLast function, 4-8

also see LastFirst
LCASE$, see Lower, LowerTbl
LEFT$, see QPLeft
LEN, see QPLen
LIB.EXE, 1-8, 1-9, 1-10, 1-41, 1-49
Library, 1-6, 1-7, 1-8, 1-12
LINE INPUT, see Editor,

Scrollln, Textln
LINE INPUT#, 1-28

5 I

Index

also see FLinput
LineCount function, 3-70
LINK

LINKing with QuickPak
Professional, 1-41, 1-42, 1-47

building Quick Libraries, 1-43, 1-44
List File

for LIB.EXE, 1-11
for MakeQLB, 1-12

Load BASIC menu option, 1-17, 1-33
LoadExec subroutine, 3-72
LOC, see FLoc
LOCATE, see CsrSize
LOCK, see LockFile
LockFile subroutine, 3-74
LockUp subroutine, 7-50

also see ReBoot
LOF, see FLof
LOG, see QPLOG 10
LongestStr function, 8-14
LOTUS123

reading and writing LOTUS 123
files, see Demo123

LowASCII subroutine, 8-15
also see Translate, RemCtrl

Lower subroutine, 8-16
also see LowerTbl, Upper

LowerTbl subroutine, 8-17
also see Lower

LPRINT, see BLPrint
LTRIM$, see QPLTrim, QPTrim
Lts2Menu subprogram, 5-22

also see LtsMenu
LtsMenu subprogram, 5-24

also see Lts2Menu

M
MakeDir subroutine, 3-75
MakeMon2 subroutine, 9-33

also see MakeMono
MakeMono subroutine, 9-31

also see MakeMon2
MakeQLB, 1-49

tutorial 1-10, 1-11, 1-12
program description, 7-51

MAMenu subroutine, 5-26

6

QuickPak Professional

also see AMenu, AMenuT,
MAMenuT

also see Menus for a listing of
additional menu routines

MAMenuT subroutine, 5-28
also see AMenu, AMenuT,

MAMenu
also see Menus for a listing of

additional menu routines
Marquee subprogram, 7-54
MASCIIPick subroutine, 5-5

also see ASCIIPick
Maskln subroutine, 5-30
MathChip function, 7-55

also see GetCPU
MaxD,I,L,S,C functions, 2-27
Maxlnt function, 7-56

also see MaxLong, Minlnt,
MinLong

MaxLong function, 7-56
also see Maxlnt, Minlnt, MinLong

MBuffSize function, 6-23
also see MGetState, MSetState

MColorPick subroutine, 5-8
also see ColorPick

MEditor subroutine, 5-33
also see Editor, QEdit, Scrollln,
Textln

Menus, see AMenu, AMenuT,
Lts2Menu, LtsMenu, MAMenu,
MAMenuT, Menu Vert,
PickList, PullDown,
PullDnMS, VertMenu

MenuVert subroutine, 5-35
also see MMenuVert
also see Menus for a listing of

additional menu routines
MGetKey function, 5-37
MGetState subroutine, 6-24

also see MBuffSize, MSetState
MID$, see QPMid
MidChar function, 8-18
MidCharS function, 8-20
MidStrRest subroutine, 7-90
MidStrSave subroutine, 7-90
MinD,I,L,S,C functions, 2-28

Crescent Software, Inc.

QuickPak Professional

Minlnt function, 7-57
also see Maxlnt, MaxLong,

MinLong
MinLong function, 7-57

also see Maxlnt, MaxLong,
Minlnt

MKDIR, see MakeDir
MMenuVert subroutine, 5-39

also see Menu Vert
Modules, 1-13, 1-14, 1-15
Monitor function, 9-34
MonthName function, 7-58

also see DayName
Motion subroutine, 6-18
Mouse, 6-19

button pressed, see ButtonPress,
GetCursor, GetCursorT,
MouseRange

coordinates, see ButtonPress,
GetCursor, GetCursorT,
MouseRange

defining shape (graphics mode
only), see GrafCursor

defining color (text mode only),
see TextCursor

displaying mouse cursor, see
ShowCursor

hiding the mouse cursor, see
HideCursor

initializing, see InitMouse,
TextCursor

locating, 6-24, 6-25,
also see SetCursor, MouseTrap

saving current state, 6-22,
also see MouseState

sensitivity, 6-18,
also see Motion

subroutine, 6-19
trapping, 6-24, 6-25,

also see MouseTrap
MouseRange,1,G,Gl subroutines,

6-21
Mouse State routines, 6-23
MouseTrap subroutine, 6-24
MPaintBox subroutine, 9-36

also see PaintBox, PaintBox0

Crescent Software, Inc.

Index

MPRestore subroutine, 9-37
also see ScmSave, ScmSave0

MQPrint subroutine, 9-39
also see PRINT for a listing of

additional print routines
MScrnRest subroutine, 9-40

also see ScmRest, ScmRestO
MScmSave subroutine, 9-40

also see ArraySize, MakeMono,
ScmSave, ScmSave0

MsgBox subroutine, 7-59
also see Dialog

MSHERC.COM, 9-29

N
NAME, see NameFile
NameDir subroutine, 3-76
NameFile subroutine, 3-77
Near Strings, 1-31
NetDrive function, 3-78
Notlnstr function, 8-21
Null function, 8-22
Num2Bin function, 4-9

also see Bin2Num, Num2Bin2
Num2Bin2 function, 4-9

also see Bin2Num, Num2Bin
Num2Date function, 7-61

also see Date2Num
Num2Day function, 7-62

also see Date2Day, DayName
Num2Time function, 7-63

also see Time2Num
Numln subprogram, 5-41
NumLock function, 6-26
NumOff subroutine, 6-27
NumOn subroutine, 6-27
NumStrings function, 7-91

0
Object, 1-6, 1-8

extracting, adding, deleting from
Libraries 1-9, 1-49

ON ERROR
eliminating, 1-26, 1-51, 1-52
also see DOSError, ErrorMsg,
WhichError

7 I

I

Index

p

ON TIMER, 7-12
OneColor function, 9-41

also see Colors, SplitColor
OPEN, 1-17, 1-26, 1-33

also see FCreate, FOpen,
FOpenAll, FOpenS

Pad function, 4-10
PaintBox subroutine, 9-42

also see PaintBox0
PaintBox0 subroutine, 9-44

also see PaintBox
Parse subprogram, 4-11
ParseStr function, 4-12

also see ParseString, UnParseStr
ParseString function, 8-23

also see ParseStr, UnParseStr
Pause subroutine, 7-64

also see Pause2, Pause3
Pause2 subroutine, 7-65

also see Pause, Pause3
Pause3 subroutine, 7-66

also see Pause, Pause2
PCOPY, see HCopy
PDS, 1-23, 1-31, 1-32, 1-41, 1-44,

1-74, 2-15, 2-16, 2-27, 2-29, 2-32,
2-37, 6-18, 7-4, 7-79, 8-29, 8-30,
8-31

PDQTimer function, 7-67
also see Pause, Pause2, Pause3

PEEK, 1-92, 7-80
see Peekl, Peek2

Peekl function, 7-68
also see Peek2

Peek2 function, 7-69
also see Peekl

PeekBuf function, 6-28
also see InStat, ClearBuf

PickList subprogram, 5-53
also see Menus for a listing of
additional menu routines

PLAY, see Chime, QPPlay
POKE, 7-80

see Pokel, Poke2
Pokel subroutine, 7-70

8

QuickPak Professional

also see Poke2
Poke2 subroutine, 7-71

also see Pokel
Polling, 1-19, 1-20, 1-21
Power function, 7-72

also see Power2, Times2
Power2 function, 7-72

also see Power, Times2
PREFIX. OBJ, 1-45
PRINT, see APrintO, APrintT,

APRintTO, BPrint, MQPrint,
QPrint, QPrintO, QPrintAny,
QPrintRC

PRINT#, 1-28
also see FPut

PRINT SCREEN
see PrtSc, PrtSc0, ScrnDump

PRINT USING, see FU sing,
PUsing

PRNReady, 7-7
function, 7-73

also see PSwap
ProperName subroutine, 8-25
PrtSc subroutine, 9-45

also see PrtSc0, ScrnDump
PrtSc0 subroutine, 9-47

also see PrtSc, ScrnDump
PSwap subroutine, 7-74

also see PRNReady
Ptr86, 1-103
PullDnMS subprogram, 5-47

also see PullDown
PullDown subprogram, 5-45

also see PullDnMS
PUsing subroutine, 9-48

also see FU sing
PUT

file I/0, 1-29
also see FPut, FPutA, FPutAH,

FPutR, FPutRT, FPutRTA,
FPutT

PutVol subroutine, 3-79
also see GetVol

Crescent Software, Inc.

QuickPak Professional

Q
Q LINK.EXE switch, 1-43

· QBHerc.COM, 9-29
QBLoad, 1-100, 1-101

subroutine, 3-80
QBSave, 1-98, 1-99, 1-100

subroutine, 3-81
QBX, see PDS
QEdit, 1-20, 1-21, 7-90

description, 1-56 to 1-62
subprogram, 5-49
also see Editor, MEditor, Scrollln,

Textln, QEditS, QEdit7
QEdit7, 1-19, 1-20, 1-21

description, 5-50
subprogram, 5-49
also see Editor, MEditor,

Scrollln, Textln, QEdit, QEditS
QEditS, 1-19, 1-20, 1-21

description, 5-50
subprogram, 5-49
also see Editor, MEditor,

Scrollln, Textln, QEdit,
QEdit7

QEditType.BI, 1-60
Qinstr function, 8-26
Qinstr2 function, 8-26
QinstrB function, 8-27
QinstrB2 function, 8-27
QinstrH subroutine, 8-28
QPACOS function, 4-20
QPASIN function, 4-21
QPATAN2 function, 4-21
QPAVG function, 4-32
QPCINT function, 4-28
QPCli subroutine, 7-75
QPCOUNT function, 4-32
QPCTERM funtion, 4-28
QPDDB function, 4-30
QPFV function, 4-24
QPFVD function, 4-25
QPFVN function, 4-24
QPFVND function, 4-25
QPFVP function, 4-24
QPFVPD function, 4-25
QPHex function, 4-14

Crescent Software, Inc.

QPIRR function, 4-29
QPLeft function, 8-29
QPLen function, 8-30
QPLOGlO function, 4-22
QPLTrim function, 8-33
QPMAX function, 4-33
QPMid function, 8-29
QPMIN function, 4-33
QPNPV function, 4-29
QPPlay subroutine, 7-76

Index

also see Chime, QPPlay, QPSound
QPPMT function, 4-26
QPPMTD function, 4-27
QPPV function, 4-26
QPPVD function, 4-27
QPPVN function, 4-26
QPPVND function, 4-27
QPRA TE function, 4-29
QPRight function, 8-29
QPrint, 1-80, 1-81

subroutine, 9-50
also see PRINT for a listing of

additional print routines
QPrint0 subroutine, 9-52

also see PRINT for a listing of
additional print routines

QPrintAny subroutine, 9-53
also see PRINT for a listing of
additional print routines

QPrintRC subroutine, 9-55
also see PRINT for a listing of

additional print routines
QPROUND function, 4-22
QPRTrim function, 8-33

. QPSadd function, 8-31
QPSegAdr function, 7-79

also see QPSSeg
QPSti subroutine, 7-75
QPSLN function, 4-31
QPSolver example program, 7-77

also see Evaluate
QPSound subroutine, 7-78

also see Chime, QPPlay
QPSSeg function, 7-79

also see QPSegAdr
QPSTD function, 4-33

9 I

Index

QPStrI function, 8-32
also see QPValI

QPStrL function, 8-32
also see QPValL

QPSUM function, 4-34
QPSYD function, 4-31
QPTrim function, 8-33
QPUSI function, 7-80
QPValI function, 8-34

also see QPStrI
QPValL function, 8-34

also see QPStrL
QPV AR function, 4-34
QPWindow subroutine, 9-56
QuickBASIC 2, 1-70
QuickBASIC 3, 1-70
QuickDOS program description, 3-82
QuickLibrary, 1-6, 1-7, 1-8, 1-10,

R

1-12, 1-13, 1-32
building, 1-43
also see MakeQLB

Rand function, 4-15
Random Files, 1-29
ReadDir subroutine, 3-84
ReadDirs program, 3-86
ReadDirT subroutine, 3-87
ReadFile subroutine, 3-89
ReadFilel subroutine, 3-91
ReadFileT subroutine, 3-93
ReadFileX subroutine, 3-95
ReadScm subroutine, 9-58

also see ReadScmO
ReadScmO subroutine, 9-60

also see ReadScm
ReadSect subroutine, 3-96
ReadTest function, 3-97

also see WriteTest
ReBoot subroutine, 7-81

also see LockUp
Recursion, See Recursion
REDIM 1-93, 1-94
RemCtrl subroutine, 8-35

also see Low ASCII, Translate
Removable function, 3-98

10

s

QuickPak Professional

ReplaceChar subroutine, 8-36
also see ReplaceStr

ReplaceChar2 subroutine, 8-36
also see ReplaceStr

ReplaceCharT subroutine, 8-37
ReplaceCharT2 subroutine, 8-37
ReplaceString subprogram, 8-40

also see ReplaceChar, ReplaceChar2
ReplaceTbl subroutine, 8-40
Response Files

for LIB.EXE 1-11, 1-48
for LINK.EXE 1-48

RIGHT$, see QPRight
RMDIR, see KillDir
RND, see Rand
RptKey subroutine, 6-29
RTRIM$, see QPRTrim, QPTrim

SADD, see QPSadd
ScanFile function, 3-99
SCREEN function, see ReadScm
ScrlLock function, 6-30
ScrnDump subroutine, 9-61

also see PrtSc, PrtSc0
ScrnRest, 9-9

subroutine, 9-63
also see MPRestore, MScmSave,
ScmRest0, ScmSave, ScmSave0

ScmRest0, subroutine, 9-65
also see MPRestore, MScmSave,
ScrnRest, ScmSave, ScmSaveO

ScrnSave, 9-9
subroutine, 9-66
also see ArraySize, MakeMono,
MPRestore, MScmSave,
ScrnRest, ScrnRest0,
ScmSave0

ScmSave0 subroutine, 9-67
also see ArraySize, MakeMono,
MPRestore, MScrnSave,

ScrnRest, ScrnRestO, ScrnSave
ScrollD,L,R,U subroutines, 9-68

also see APrint, APrintO
Scrollln subprogram, 5-51

Crescent Software, Inc.

QuickPak Professional

also see Editor, MEditor, Textln,
QEdit, QEdit7, QEditS

Search subroutine, 2-29
also see SearchT, SearchT2

SearchPath function, 3-101
SearchT subroutine, 2-31

also see Search, SearchT2
SearchT2 subroutine, 2-31

also see Search, SearchT
SEEK, see FSeek
SEG, 1-39, 1-100, 1-101, 1-102,

1-103
BASIC keyword, 1-39
LINK switch, 1-44
BUILDLIB option, 1-45

also see QPSSeg, QPSegAdr
Segments

calling with, 1-102 to 1-104
Sequence subroutine, 8-41
Sequential Files, 1-28
SetAttr subroutine, 3-102
SetBit, 1-55

subroutine, 2-33
SetCmd subroutine, 3-103
SetCnf,

description, 1-77
passing, 1-22, 1-23, 1-24

SetCursor subroutine, 6-31
also see MouseTrap

SetDrive subroutine, 3-104
SetError subroutine, 3-105
SetLevel subroutine, 3-106
SetMonSeg subroutine, 9-69
SHARED, 1-92
ShareThere function, 3-107
SHELL,6-34
ShiftIL subroutine, 7-82

aLw see ShiftLL, ShiftLR,
Times2

ShiftIR subroutine, 7-82
also see ShiftLL, ShiftLR

ShiftKey function, 6-32
ShiftLL subroutine, 7-82

also see ShiftIL, ShiftIR
ShiftLR subroutine, 7-82

also see ShiftIL, ShiftIR

Crescent Software, Inc.

Index

ShowCursor subroutine, 6-33
also see HideCursor

ShrinkTab function, 4-16
Signed function, 4-17

also see U nSigned
SortD, I, L, S, C subroutines, 2-34
Sorts, 1-73,1-74,1-75,1-76

fixed-length strings, SortT,
SortT2

numeric, SortC, SortD, Sort!, SortL,
Sorts

string, SortStr, SortStr2
also see listings under Indexed Sorts
also see FileSort, KeySort

SortStr subroutine, 2-35
SortStr2 subroutine, 2-35
SortT subroutine, 2-36
SortT2 subroutine, 2-36
SOUND, see Chime, QPPlay,

QPSound
Soundex function, 7-84
SpellNumber function, 8-42
SplitColor subroutine, 9-70

also see Colors, OneColor
SplitName subroutine, 3-108
Spread

description, 1-62, 1-63, 1-64, 1-65
subprogram, 5-54

SSEG, see QPSSeg
Stack, 1-74, 1-75
STATIC, 1-88, 1-89

metacommand, 1-94
STR$, see QPStrI, QPStrL
String Manager routines, 7-86
StringRest subroutine, 7-91
StringRestore subprogram, 7-92
StringSave subroutine, 7-92
StringSize function, 7-93
String Space, 1-105
StrLength function, 7-93
StuftBuf subroutine, 6-34
SublString subroutine, 7-94
Subprograms, 1-13, 1-85

Moving, 1-68
SysTime subroutine, 7-95

11 I

Index

T
TextCursor subroutine, 6-36
Textln subprogram, 5-55

also see Editor, MEditor,
Scrollln, QEdit, QEdit7, QEdits

TIME$, see SysTime
Time2Num function, 7-96

also see Num2Time
TIMER, see PDQTimer

also see Pause, Pause2, Pause3
Times2 function, 7-97

also see Power, Power2, ShiftIL
Translate subroutine, 8-43
Traplnt function, 7-98

u
UCASE$, see Upper, UpperTbl
Unique function, 3-109
UNLOCK, see UnlockFile
UnLockFile subroutine, 3-110

also see LockFile
UnParseStr function, 4-18

also see ParseStr
Unsigned function, 4-19

also see Signed
Upper subroutine, 8-44

also see Lower, UpperTbl
UpperTbl Subroutine, 8-45

also see Upper, LowerTbl

V
VAL, see Eval, QPValI, QPValL
Valid function, 3-111
V ARPTR, 1-39

also see QPSSeg, QPSegAdr
VertMenu subprogram, 5-57

also see Menus for a listing of
additional menu routines

VertMenuT subprogram, 5-58
also see Menus for a listing of

additional menu routines
Very Long Integers, 1-71, 1-72
ViewFile subprogram, 7-100

also see File View
VLAdd subroutine, 7-102
VLDiv subroutine, 7-103

12

QuickPak Professional

VLMul subroutine, 7-104
VLPack subroutine, 7-105
VLSub subroutine, 7-106
VLUnpack subroutine, 7-107
VOL, see GetVol, PutVol

w
WaitKey function/subroutine, 6-38
WaitScan function, 6-39
WaitUp subroutine, 6-40

also see KeyDown
WeekDay function, 7-108

also see Num2Day, Day2Num
WhichError, 1-26, 1-27, 1-28, 1-51

function, 3-112
WindowMgr subprogram, 9-71
Wipes subprogram, 9-73
WordWrap subprogram, 7-109
WRITE#, 1-28

also see FPut
W riteSect subroutine, 3-114
WriteSect2 subroutine, 3-116
WriteTest function, 3-117

also see ReadTest

X
XMS Manager subroutines, 7-110
Array2XMS subroutine, 7-115
KeepXMSHandle subroutine, 7-120
UMBAllocHandle subroutine, 7-120
UMBRelMem subroutine, 7-120
XMS2Array subroutine, 7-116
XMSAllocMem subroutine, 7-115
XMSError function, 7-114
XMSGetlEl subroutine, 7-117
XMSlnfo subroutine, 7-119
XMSLoaded function, 7-114
XMSRelMem subroutine, 7-115
XMSSellEl subroutine, 7-118
XMSSetError subroutine, 7-119

y
YesNo subroutine, 5-59

also see YesNoB
YesNoB subroutine, 5-61

also see YesNo

Crescent Software, Inc.

	qpp-fc
	qpp-1
	qpp-2
	qpp-3
	qpp-4

